Solve the differential equation: (tan^-1y- x)dy=(1+y^2)dx
Answers
Answered by
20
(Tan⁻¹ y - x ) dy = (1+y²) dx ---- (1)
Let Tan⁻¹ y = z => y = tan z ---- (2)
=> dy = Sec² z dz
Hence, (z - x) Sec² z dz = Sec² z dx
=> dz/dx = 1/(z-x) ---- (3)
Let 1/(z-x) = v => z = x +1/v
=> dz/dx = 1 - 1/v² dv/dx
Substitute in (3).... 1 - 1/v² dv/dx = v
dv/dx = (1-v) v²
dv / [ v² (1-v) ] = dx
dv [ 1/v + 1/v² + 1/(1-v) ] = dx by method of partial fractions
Integrate both sides.
Ln v - 1/v - Ln |1-v| = x + K
Ln [ v/|1-v| * exp(-1/v) ] = x + K
Ln [ exp(-1/v) * 1 / |1/v - 1 | ] = x + K
=> K1 * eˣ = exp(-1/v) * 1/|1/v - 1|
K * eˣ = exp(-x - tan⁻¹ y) * [ 1/ |Tan⁻¹ y - x - 1| ]
This is the solution.
Let Tan⁻¹ y = z => y = tan z ---- (2)
=> dy = Sec² z dz
Hence, (z - x) Sec² z dz = Sec² z dx
=> dz/dx = 1/(z-x) ---- (3)
Let 1/(z-x) = v => z = x +1/v
=> dz/dx = 1 - 1/v² dv/dx
Substitute in (3).... 1 - 1/v² dv/dx = v
dv/dx = (1-v) v²
dv / [ v² (1-v) ] = dx
dv [ 1/v + 1/v² + 1/(1-v) ] = dx by method of partial fractions
Integrate both sides.
Ln v - 1/v - Ln |1-v| = x + K
Ln [ v/|1-v| * exp(-1/v) ] = x + K
Ln [ exp(-1/v) * 1 / |1/v - 1 | ] = x + K
=> K1 * eˣ = exp(-1/v) * 1/|1/v - 1|
K * eˣ = exp(-x - tan⁻¹ y) * [ 1/ |Tan⁻¹ y - x - 1| ]
This is the solution.
kvnmurty:
click on re d hear thansk above pls
Similar questions