Solve the Differential Equation
(x^2 - y^2)dx + 2xydy = 0
please give correct answer
Answers
Answer ----> ( x² + y² ) = cx
Given----> ( x² - y² ) dx + 2xy dy = 0
To find-----> Solve given differential equation
Solution----> ATQ,
( x² - y² ) dx + 2xy dy = 0
=> 2xy dy = - ( x² - y² ) dx
=> dy / dx = - ( x² - y² ) / 2xy ...................( 1 )
This is a homogenous given differential equation.
So , putting , y = vx
Now differentiating with respect to x .
dy / dx = d / dx ( vx )
Applying product rule of differentiation , we get,
=> dy/dx = v d/dx ( x ) + x dv/dx
=> dy/dx = v ( 1 ) + x dv/dx
=> dy/dx = v + x dv/dx
Now by ( 1 ) , we get,
v + x dv/dx = - ( x² - v²x² ) / 2x ( vx )
= - x² ( 1 - v² ) / 2x² v
x² Cancel out from numerator and denominator in RHS, we get.
v + x dv/dx = - ( 1 - v² ) / 2v
=> x dv/dx = { ( v² - 1 ) / 2v } - v
= ( v² - 1 - 2v² ) / 2v
= ( -1 - v² ) / 2v
=> x dv/dx = - ( 1 + v² ) / 2v
=> 2v dv / ( 1 + v² ) = - dx / x
Integrating both sides we get ,
=> ∫ 2v dv / ( 1 + v² ) = - ∫ dx / x + log c ...........( 2 )
Let, 1 + v² = t
Differentiating with respect to x , we get,
=> (0 + 2v ) dv = dt
=> 2v dv = dt
So , by ( 2 ) , we get,
=> ∫ dt / t = - logx + logc
=> log t = log ( c / x )
=> t = c / x
=> t x = c
Putting t = 1 + v² , in it , we get,
=> ( 1 + v² ) x = c
Now putting v = y / x , in it , we get,
=> { 1 + ( y / x )² } x = C
=> { 1 + ( y² / x² ) } x = c
=> { ( x² + y² ) ) x² } x = c
=> ( x² + y² ) / x = c
=> ( x² + y² ) = cx
Given, (x2+y2)dx−2xydy=0
⇒(x2+y2)dx=2xydy
⇒dxdy=2xyx2+y2 .... (i)
Let y=vx
Thus, dxdy=v+xdxdv
Thus, v+xdxdv=2x(vx)x2+(vx)2
⇒v+xdxdv=2v1+v2
⇒xdxdv=2v1+v2−v
⇒xdxdv=2v1+v2−2v2