Math, asked by manishkumar2430, 4 months ago

solve the differential equation (x^2logx)dy/dx =2y​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

( {x}^{2}  log(x) ) \frac{dy}{dx} = 2y \\

  \implies \frac{dy}{2y}  =  \frac{dx}{ {x}^{2} log(x)  }  \\

Integrating both sides, we have,

 \implies \frac{1}{2}  \int \frac{dy}{y}  =  \int \frac{dx}{ {x}^{2}  log(x) }  \\

Let log(x) = t

=> dx = x dt

 \implies \frac{1}{2}  log(y)  =  \int \:  \frac{x \: dt}{x^{2}  \:. t}  \\

 \implies \frac{1}{2}  log(y)  =  \int \frac{dt}{ {e}^{t} t}  \\

Similar questions