solve the differential equation (x^2y^2+xy)ydx+(x^2y^2-1)xdy=0
Answers
Step-by-step explanation:
xy
2
(xy+1)dx+x(xy−1)(xy+1)dy=0
x=0x=0
y=0y=0
xy+1=0=>y=-{1 \over x}xy+1=0=>y=−
x
1
Or
y^2dx+(xy-1)dy=0y
2
dx+(xy−1)dy=0
Using an Integrating Factor
P(x,y)=y^2, Q(x,y)=xy-1P(x,y)=y
2
,Q(x,y)=xy−1
{\eth P \over \eth y}=2y, {\eth Q \over \eth x}=y, {\eth P \over \eth y}\not={\eth Q \over \eth x}
ðy
ðP
=2y,
ðx
ðQ
=y,
ðy
ðP
=
ðx
ðQ
{\eth P \over \eth y}-{\eth Q \over \eth x}=2y-y=y
ðy
ðP
−
ðx
ðQ
=2y−y=y
Integrating Factor
\mu=\mu(y)μ=μ(y)
{1 \over \mu}{d\mu \over dy}=-{1 \over P}({\eth P \over \eth y}-{\eth Q \over \eth x})
μ
1
dy
dμ
=−
P
1
(
ðy
ðP
−
ðx
ðQ
)
{1 \over \mu}{d\mu \over dy}=-{1 \over y^2}(2y-y)
μ
1
dy
dμ
=−
y
2
1
(2y−y)
{d\mu \over \mu}=-{dy \over y}
μ
dμ
=−
y
dy
\int {d\mu \over \mu}=\int (-{dy \over y})=>\ln|\mu|=\ln|{1 \over y}|+\ln C∫
μ
dμ
=∫(−
y
dy
)=>ln∣μ∣=ln∣
y
1
∣+lnC
We choose
\mu={1 \over y}μ=
y
1
Multiplying the original differential equation by \mu=1/yμ=1/y produces the exact equation:
ydx+(x-{1 \over y})dy=0ydx+(x−
y
1
)dy=0
Indeed, now we have
{\eth P \over \eth y}=1, {\eth Q \over \eth x}=1, {\eth P \over \eth y}={\eth Q \over \eth x}
ðy
ðP
=1,
ðx
ðQ
=1,
ðy
ðP
=
ðx
ðQ
Solve the resulting equation. The function
Given Differential equation is
On Comparing with Mdx + Ndy = 0, we get
and
Now,
Consider,
and
So, given equation is not exact Differential equation .
So, Consider again
So, Integrating factor is
Now, Multiply the given Differential equation by Integrating Factor we get .
On integrating both sides, we get