Math, asked by Thinhhi, 5 months ago

Solve the differential equation x^2y'' -3xy' +3y=2x^4e^x

Answers

Answered by halamadrid
0

The solution of the given differential equation is y_{p} = 2x^{2} e^{x} - 2xe^{x}

Given that;

x^2y'' -3xy' +3y=2x^4e^x

To find;

The solution of  the differential equation x^2y'' -3xy' +3y=2x^4e^x

Solution;

The given equation is an Euler-Cauchy differential equation. Find the characteristic polynomial given y=x^{r} to solve the homogenous equation.

Let y = x^{r}, y^{'} = rx^{r} , y^{'} = r(r - 1)x^{r - 2}

x^{2}y^{"} - 3xy^{'} + 3y = 0

x^{2}r(r - 1)x^{r - 2} -3xrx^{r - 1} + 3x^{r} = 0

r(r - 1) -3r + 3 = 0 ⇔ r^{2} - 4r + 3 = 0 = (r -1)(r - 3)

y_{h} = Ax^{3} + Bx is the homogenous equation.

Next, we will find a particular solution using the method of undetermined coefficients.

y_{p} = ax^{2}e^{x} + bxe^{x}

y^{'} _{p} = ax^{2}e^{x} + 2axe^{x} + bxe^{x} + be^{x}

y^{"} _{p} = ax^{2}e^{x} + 4axe^{x} + 2ae^{x} + bxe^{x} + 2be^{x}

multiply each by its coefficients in the ODE,

x^{2}y^{" } - 3xy^{'} + 3y = 2x^{4}e^{x}

3y_{p} = 3ax^{2}e^{x} + 3bxe^{x}

- 3xy^{'} _{p} = - 3ax^{3}e^{x} - 6ax^{2}e^{x} - 3bx^{2}e^{x} -3bxe^{x}

x^{2}y^{"} _{p} } = ax^{4}e^{x} +4ax^{3} e^{x}+ 2ax^{2} e^{x} + bx^{3} e^{x} + 2bx^{2} e^{x}4

match equal terms to determine a and b.

xe^{x} : 3b - 3b = 0

b = b

x^{2} e^{x} : 3a  - 6a - 3b + 2a + 2b = 0

a + b = 0

x^{3} e^{x} : -3a + 4a + b = 0

b = - a

x^{4} e^{x} : a =2

This over-determined linear system has a=2,b=(−2). The particular solution,

y_{p} = 2x^{2} e^{x} - 2xe^{x}

#SPJ1

Similar questions