solve the differential equation
(x2- y2)DX +2xydy = 0
Answers
Answered by
3
Answer
Given, (x²+y²)dx−2xydy=0
⇒(x²+y²)dx = 2xydy
⇒ dy/dx = x²+y²/2xy.... (i)
Let y=vx
Thus, dy/dx =v+x dv/dx
Thus, v+x dv/dx = x²(vx)²/2x+(vx)
⇒v+x dv/dx = 1 + v²/ 2v
⇒x dv/dx = 1 + v²/ 2v − v
⇒x dv/dx = 1 + v²/2v − v
⇒x dv/dx = 1 − v²/2v
⇒ dx/x = 2v/1 −v² x dv
⇒ dx/x − 2v/1 −v² dv = 0 ....(ii)
Integrating both sides, we have
logx+log(1−v² )=logC
⇒logx(1−v²)=logC
⇒x(1−v²)=C
⇒x(1− y²/x² )=C
⇒x( x² − y²/ x² )=C
⇒x²−y² =Cx
Similar questions