Solve the eqn: 1 + 6 + 11 + 16 + ... + x = 148 . please fast
Answers
Answered by
610
Given 1 + 6+ 11+ 16 + ............+x = 148
take the AP :1,6,11,16,..........,x
In this AP
a = 1
d = 6-1 = 5
Given Sn = 148
we know that Sn = n/2[2a+ (n-1)d]
⇒n/2 [ 2a +(n-1)d] = 148
⇒n[2(1) + (n-1)5 ] = 148 ×2
⇒n[ 2 +5n - 5 ] = 296
⇒n [ -3 + 5n ] = 296
⇒ -3n + 5n² = 296
⇒ 5n² - 3n -296 = 0
⇒ 5n² - 40n + 37n - 296 = 0
⇒5n( n - 8) + 37( n - 8) = 0
⇒ (n - 8) (5n + 37) = 0
⇒n-8 = 0 or 5n +37 = 0
⇒n = 8 or n= -37/5
As n is the no.of terms in the AP can not be fractional and negative
∴n=8
Theirfore x is the 8th term
Tn = T8 = a + (n-1)d
= 1 + (8-1)5
= 1+7(5)
= 1+35
= 36
∴8th term = x = 36.
take the AP :1,6,11,16,..........,x
In this AP
a = 1
d = 6-1 = 5
Given Sn = 148
we know that Sn = n/2[2a+ (n-1)d]
⇒n/2 [ 2a +(n-1)d] = 148
⇒n[2(1) + (n-1)5 ] = 148 ×2
⇒n[ 2 +5n - 5 ] = 296
⇒n [ -3 + 5n ] = 296
⇒ -3n + 5n² = 296
⇒ 5n² - 3n -296 = 0
⇒ 5n² - 40n + 37n - 296 = 0
⇒5n( n - 8) + 37( n - 8) = 0
⇒ (n - 8) (5n + 37) = 0
⇒n-8 = 0 or 5n +37 = 0
⇒n = 8 or n= -37/5
As n is the no.of terms in the AP can not be fractional and negative
∴n=8
Theirfore x is the 8th term
Tn = T8 = a + (n-1)d
= 1 + (8-1)5
= 1+7(5)
= 1+35
= 36
∴8th term = x = 36.
Kaur000:
Thankieww so much .. :)
Answered by
1
Answer:
x = 36
Step-by-step explanation:
Given:- 1 + 6 + 11 + 16 + ..... + x =148
To Find:- Value of x
Solution:- This is an A.P. with first term = 1 and common difference = 5.
∵ = [2a + (n-1)d]
⇒ 148 = [2 + (n-1)5]
⇒ 148 × 2 = n [2 + 5n - 5]
⇒ 296 = 5 - 3n
⇒ 5 - 3n - 296 =0
⇒ 5 - 40n - 37n - 296 = 0
⇒ 5n(n-8) - 37(n-8) = 0
⇒ (n-8)(5n-37) = 0
∴ n = 8 or n =
Now,
∵ = a + (n-1)d
⇒ x = 1 + (8-1)5
⇒ x = 36
∴ x = 36
#SPJ2
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago
English,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago