Math, asked by harpreet2223, 11 months ago

solve the eqn :
4sin x sin 2x sin 4x = sin 3x​

Answers

Answered by Nikhil0204
0

\huge\green{\mathfrak{\underline{\underline{ANSWER:-}}}}

4 \sin(x)  \sin(2x)  \sin(4x)  =  \sin(3x )  \\ 2(2 \sin(2x)  \sin(x) ) \sin(4x)  =  \sin(3x)  \\

As we know that:-

2 \sin(a)  \ \sin(b)  =  \cos(a - b)  -  \cos(a + b)

 =  > 2( \cos(2x - x)  -  \cos(2x + x) ) \sin(4x)  =  \sin(3x)  \\ 2( \cos(x)  -  \cos(3x) ) \sin(4x)  =  \sin(3x)  \\ 2 \sin(4x )  \cos(x)  - 2 \sin(4x)  \cos(3x)  =  \sin(3x)

Also,

2 \sin(a)  \cos(b)  =  \sin(a + b)  +  \sin(a - b)  \\

 =  >  \sin(4x + x)  +  \sin(4x - x)  -  \sin(4x + 3x)    -  \sin(4x - 3x) =  \sin(3x)   \\  \sin(5x)  +  \sin(3x)  -  \sin(7x)  -  \sin(x)  =  \sin(3x)  \\  =  >  \sin(5x)  -  \sin(7x)  =  \sin(x)  \\

Also,

 \sin(c)  -  \sin(d)  = 2 \cos( \frac{c + d}{2} )  \sin( \frac{c - d}{2} )

 =  > 2 \cos( \frac{5x  +  7x}{2} )  \sin( \frac{5x - 7x}{2} )  =  \sin(x)  \\2  \cos( 6 x)  \sin( - x)  =  \sin(x)  \\  - 2 \cos(6x)  \sin(x)  =  \sin(x)  \\  =  >  \cos(6x)  =  -  \frac{1}{2}  \\

 =  > 6x = 2n\pi +  -  \frac{2\pi}{3}  \\ x =  \frac{n\pi}{3}  +  -  \frac{\pi}{9}

HOPE THIS HELPS YOU!!!!!!!

PLEASE MARK IT AS BRAINLIST!!!

#STAY HOME #STAY SAFE

Answered by SweetPoison7
0

\huge\green{\mathfrak{\underline{\underline{ANSWER:-}}}}

ANSWER:−

\begin{gathered}4 \sin(x) \sin(2x) \sin(4x) = \sin(3x ) \\ 2(2 \sin(2x) \sin(x) ) \sin(4x) = \sin(3x) \\\end{gathered}

4sin(x)sin(2x)sin(4x)=sin(3x)

2(2sin(2x)sin(x))sin(4x)=sin(3x)

As we know that:-

2 \sin(a) \ \sin(b) = \cos(a - b) - \cos(a + b)2sin(a) sin(b)=cos(a−b)−cos(a+b)

\begin{gathered}= > 2( \cos(2x - x) - \cos(2x + x) ) \sin(4x) = \sin(3x) \\ 2( \cos(x) - \cos(3x) ) \sin(4x) = \sin(3x) \\ 2 \sin(4x ) \cos(x) - 2 \sin(4x) \cos(3x) = \sin(3x)\end{gathered}

=>2(cos(2x−x)−cos(2x+x))sin(4x)=sin(3x)

2(cos(x)−cos(3x))sin(4x)=sin(3x)

2sin(4x)cos(x)−2sin(4x)cos(3x)=sin(3x)

Also,

\begin{gathered}2 \sin(a) \cos(b) = \sin(a + b) + \sin(a - b) \\\end{gathered}

2sin(a)cos(b)=sin(a+b)+sin(a−b)

\begin{gathered}= > \sin(4x + x) + \sin(4x - x) - \sin(4x + 3x) - \sin(4x - 3x) = \sin(3x) \\ \sin(5x) + \sin(3x) - \sin(7x) - \sin(x) = \sin(3x) \\ = > \sin(5x) - \sin(7x) = \sin(x) \\\end{gathered}

=>sin(4x+x)+sin(4x−x)−sin(4x+3x)−sin(4x−3x)=sin(3x)

sin(5x)+sin(3x)−sin(7x)−sin(x)=sin(3x)

=>sin(5x)−sin(7x)=sin(x)

Also,

\sin(c) - \sin(d) = 2 \cos( \frac{c + d}{2} ) \sin( \frac{c - d}{2} )sin(c)−sin(d)=2cos(

2

c+d

)sin(

2

c−d

)

\begin{gathered}= > 2 \cos( \frac{5x + 7x}{2} ) \sin( \frac{5x - 7x}{2} ) = \sin(x) \\2 \cos( 6 x) \sin( - x) = \sin(x) \\ - 2 \cos(6x) \sin(x) = \sin(x) \\ = > \cos(6x) = - \frac{1}{2} \\\end{gathered}

=>2cos(

2

5x+7x

)sin(

2

5x−7x

)=sin(x)

2cos(6x)sin(−x)=sin(x)

−2cos(6x)sin(x)=sin(x)

=>cos(6x)=−

2

1

\begin{gathered}= > 6x = 2n\pi + - \frac{2\pi}{3} \\ x = \frac{n\pi}{3} + - \frac{\pi}{9}\end{gathered}

=>6x=2nπ+−

3

x=

3

+−

9

π

HOPE THIS HELPS YOU!!!!!!!

PLEASE MARK IT AS BRAINLIST!!!

#STAY HOME #STAY SAFE

Thanks!

Similar questions