Math, asked by TANU81, 1 year ago

Solve the eqn ;-

 \sqrt{2}x +  \sqrt{3} y = 0 \\  \\   \sqrt{3} x -  \sqrt{8} y = 0
Note :- Find (x) first .

Answers

Answered by Nikki57
276
Hey!

_______________

Refer the pic for answer.

________________

Hope it helps...!!!
Attachments:

Anonymous: nikki57
Anonymous: plz delete my account
Anonymous: plz
nilunilu: nikki di
nilunilu: kha ho
Anonymous: Stop chatting here
Akash15111: hii tanu
Anonymous: I said stop chatting here comment box is only for appreciating answers
nilunilu: i am not asking u
Akash15111: ohk guys
Answered by TheAishtonsageAlvie
350

 \boxed{ \mathfrak{Hello   \: Sister}}

• Given that :-
 \sqrt{2x}  +  \sqrt{3} y = 0 \\  \\ \Rightarrow \: x = -   \frac{ \sqrt{3} y}{ \sqrt{2} } \:  ....... \: (1)
putting this in Equation ( 2 )

That's -

√3x - √8y = 0

we obtained -

 \sqrt{3} \times  \frac{ -  \sqrt{3y} }{ \sqrt{2} }  -  \sqrt{8}y = 0 \\  \\ \Rightarrow  \frac{  {( - 3)}^{2} y }{ \sqrt{2} }  -  \sqrt{8} y = 0 \\  \\ \Rightarrow  \frac{3y -  \sqrt{2} \times  \sqrt{8} y }{ \sqrt{2} }  = 0 \\  \\ \Rightarrow \: 3y -  \sqrt{2}  \times  \sqrt{2}  \times 2  \times y= 0 \\  \\ \Rightarrow 3y - 4y = 0 \\  \\  \Rightarrow  - y = 0 \\  \\ \Rightarrow \boxed{ \bf  y  = 0}.....(3)


Putting this value in equation ( 1 )

x =  \frac{ \sqrt{3}y }{ \sqrt{2} }  \\  \\ \Rightarrow x =  \sqrt{3}  \times 0 \div  \sqrt{2}  \\  \\ \Rightarrow \boxed { \bf x = 0}
 \boxed{ \bf Hence  \: the  \: value  \: of \:  x = \:  0  \: and y  = 0} \\  \\ \mathfrak{ good \: luck : )}





jackion: yaa
iamalpha: bhai sambhal k baat kriyo
iamalpha: comments delete kr dunga
jackion: kar de bhai
iamalpha: no more comments please
jackion: hay
ShivPriya: guys pls stop this
iamalpha: last warning to everyone
iamalpha: NO MORE COMMENTS
Similar questions