solve the equarion x2-(√3+1)x+√3=0
Answers
x² - 2(√3 + 1)(x)/2 + √3 = 0
x² - 2(√3 + 1)x/2 + (√3 + 1)²/2² - (√3 + 1)²/2² + √3 = 0
[x - (√3 + 1)/2]² - (3 + 1 + 2√3)/4 + √3 = 0
[x - (√3 + 1)/2]² = (3 + 1 + 2√3 - 4√3)/4
[x - (√3 + 1)/2]² = (√3 - 1)²/2²
[x - (√3 + 1)/2] = (√3 - 1)/2
taking (+ve)
x = (√3 - 1)/2 + (√3 + 1)/2
x = (√3 - 1 + √3 + 1)/2
x = 2√3/2 = √3
taking (-ve)
x = -(√3 - 1)/2 + (√3 + 1)/2
x = (-√3 + 1 + √3 + 1)/2
x = 2/2 = 1
Answer:
1 , √3
Step-by-step explanation:
x² – 2 (x)((√3 + 1)/2) + [((√3 + 1)/2)]² - [((√3 + 1)/2)]²+ √3 = 0
[x – (√3 + 1)/2)]² = [((√3 + 1)/2)]²- √3 = 0
[x – (√3 + 1)/2)]² = [√3² + 12 + 2(√3 )1/4)]- √3
[x – (√3 + 1)/2)]² = [√3² + 12 + 2(√3)- 4√3]/4
[x – (√3 + 1)/2)]² = [√3² + 12 - 2(√3)]/4
[x – (√3 + 1)/2)]² = [(√3 – 1)/2]²
[x – (√3 + 1)/2)] = √[(√3 – 1)/2]²
[x – (√3 + 1)/2)] = ± [(√3 – 1)/2]
x = ± [(√3 – 1)/2] + (√3 + 1)/2)]
x = [(√3 – 1)/2] + (√3 + 1)/2)] x = - [(√3 – 1)/2] + (√3 + 1)/2)]
x = (√3 – 1 + √3 + 1)/2) x = (-√3 + 1+√3 + 1)/2
x = 2√3/2 x = 2/2
x = √3 x = 1