Math, asked by sunnyrajlove14p3e7sd, 1 year ago

solve the equarion x2-(√3+1)x+√3=0

Answers

Answered by rohitkumargupta
1
x² - (√3 + 1)x + √3 = 0

x² - 2(√3 + 1)(x)/2 + √3 = 0

x² - 2(√3 + 1)x/2 + (√3 + 1)²/2² - (√3 + 1)²/2² + √3 = 0

[x - (√3 + 1)/2]² - (3 + 1 + 2√3)/4 + √3 = 0

[x - (√3 + 1)/2]² = (3 + 1 + 2√3 - 4√3)/4

[x - (√3 + 1)/2]² = (√3 - 1)²/2²

[x - (√3 + 1)/2] = \it{ \frac{+}{}} (√3 - 1)/2

taking (+ve)

x = (√3 - 1)/2 + (√3 + 1)/2

x = (√3 - 1 + √3 + 1)/2

x = 2√3/2 = √3

taking (-ve)

x = -(√3 - 1)/2 + (√3 + 1)/2

x = (-√3 + 1 + √3 + 1)/2

x = 2/2 = 1
Answered by MRDynamite
0

Answer:

1 , √3

Step-by-step explanation:

x² – 2 (x)((√3 + 1)/2) + [((√3 + 1)/2)]² - [((√3 + 1)/2)]²+ √3 = 0

[x –  (√3 + 1)/2)]² =  [((√3 + 1)/2)]²- √3 = 0

[x –  (√3 + 1)/2)]² =  [√3² + 12 + 2(√3 )1/4)]- √3

[x –  (√3 + 1)/2)]² =  [√3² + 12 + 2(√3)- 4√3]/4

[x –  (√3 + 1)/2)]² =  [√3² + 12 - 2(√3)]/4

[x –  (√3 + 1)/2)]² =  [(√3 – 1)/2]²

[x –  (√3 + 1)/2)] = √[(√3 – 1)/2]²

[x –  (√3 + 1)/2)] = ± [(√3 – 1)/2]

x = ± [(√3 – 1)/2] + (√3 + 1)/2)]

x =  [(√3 – 1)/2] + (√3 + 1)/2)]              x = - [(√3 – 1)/2] + (√3 + 1)/2)]

x = (√3 – 1 + √3 + 1)/2)                               x = (-√3 + 1+√3 + 1)/2

x = 2√3/2                                                       x = 2/2

x = √3                                                               x = 1

Similar questions