Math, asked by ahmedbijoy329, 1 year ago

Solve the equatio, lg(1-2x)-2lgx=1-lg(2-5x)

Answers

Answered by IamIronMan0
0

Answer:

 log(1 - 2x)  - 2 log(x)   = 1 -  log(2 - 5x)  \\  \\ log(1 - 2x)  -  log( {x}^{2} )   =  log(10)  -  log(2 - 5x)  \\  \\  log( \frac{1 - 2x}{ {x}^{2} } )  =  log(\frac{ 10}{2 - 5x} ) \\  \\ ( \frac{1 - 2x}{ {x}^{2} } )  =  (\frac{ 10}{2 - 5x} ) \\  \\ (2 - 5x)(1 - 2x) = 10 {x}^{2}  \\  \\ 2 - 2x - 5x + 10 {x}^{2}  = 10 {x}^{2}  \\  \\ 7x = 2 \\  \\ x =  \frac{2}{7}

Answered by nesrakarsupriya4
0

Answer:

log(1−2x)−2log(x)=1−log(2−5x)log(1−2x)−log(x2)=log(10)−log(2−5x)log(x21−2x)=log(2−5x10)(x21−2x)=(2−5x10)(2−5x)(1−2x)=10x22−2x−5x+10x2=10x27x=2x=72

Similar questions