Math, asked by gurpriyasatsangi22, 10 months ago

solve the equation 0.4 X -1.5 y = 6.5 and 0.3 + 0.2 y = 0.9 by substitution method ​

Answers

Answered by Vamprixussa
5

Given

0.4x-1.5y=6.5

\implies \dfrac{4}{10}x - \dfrac{15}{10}y = \dfrac{65}{10}

Multiplying by 10, we get,

\implies 4x-15y=65

0.3x+0.2y=0.9

\implies \dfrac{3}{10}x + \dfrac{2}{10}y = \dfrac{9}{10}

Multiplying by 10, we get,

\implies 3x+2y=9

\implies 3x=9-2y

\implies x = \dfrac{9-2y}{3}

Substituting in the first equation, we get,

\implies 4(\dfrac{9-2y}{3})-15y=65

\implies 36-8y-45y=195

\implies 36-53y=195

\implies -53y=195-36

\implies -53y = 159

\implies y = -3

Substituting the value of y, we get,

x = \dfrac{9+6}{3}= \dfrac{15}{3} = 5

\boxed{\boxed{\bold{Therefore, \ the \ values \ of \ x \ and \ y \ are \ 5 \ and \ -3 \ respectively}}}}}}}}}}}

                                                         

Answered by Anonymous
2

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ values \ of \ x \ and \ y \ are}

\sf{5 \ and \ -3 \ respectively.}

\sf\orange{Given:}

\sf{The \ given \ equations \ are:}

\sf{\implies{0.4x-1.5y=6.5}}

\sf{\implies{0.3x+0.2y=0.9}}

\sf\pink{To \ find:}

\sf{Values \ of \ x \ and \ y \ by \ substitution \ method.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ equations \ are:}

\sf{\implies{0.4x-1.5y=6.5}}

\sf{Multiply \ throughout \ by \ 10}

\sf{\implies{4x-15y=65}}

\sf{\implies{x=\frac{65+15y}{4}...(1)}}

\sf{\implies{0.3x+0.2y=0.9}}

\sf{Multiply \ throughout \ by \ 10}

\sf{\implies{3x+2y=9...(2)}}

\sf{Substitute \ equation (1) \ in \ equation (2)}

\sf{3\times\frac{65+15y}{4}+2y=9}

\sf{\frac{195}{4}+\frac{45y}{4}+2y=9}

\sf{\frac{45y+8y}{4}=9-\frac{195}{4}}

\sf{\frac{53y}{4}=\frac{36-195}{4}}

\sf{\frac{53y}{4}=\frac{-159}{4}}

\sf{Multiply \ both \ sides \ by \ 4}

\sf{53y=-159}

\sf{\therefore{y=\frac{-159}{53}}}

\boxed{\sf{\therefore{y=-3}}}

\sf{Substitute \ y=3 \ in \ equation (1), \ we \ get}

\sf{x=\frac{65+15(-3)}{4}}

\sf{x=\frac{65-45}{4}}

\sf{x=\frac{20}{4}}

\boxed{\sf{\therefore{x=5}}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ and \ y \ are}}}

\sf\purple{\tt{5 \ and \ -3 \ respectively.}}

Similar questions