solve the equation 1 . 1/3 (2x-1) -1/4 (2x+1) 1/12 (2-x)
Answers
1/3(2x-1)-(2x+1)=1/12(2-x)
We move all terms to the left:
1/3(2x-1)-(2x+1)-(1/12(2-x))=0
Domain of the equation: 3(2x-1)!=0
Domain of the equation: 12(2-x))!=0
We add all the numbers together, and all the variables
1/3(2x-1)-(2x+1)-(1/12(-1x+2))=0
We get rid of parentheses
1/3(2x-1)-2x-(1/12(-1x+2))-1=0
We calculate fractions
-2x+(12x(-)/(3(2x-1)*12(-1x+2)))+(-3x2/(3(2x-1)*12(-1x+2)))-1=0
We calculate terms in parentheses: +(12x(-)/(3(2x-1)*12(-1x+2))), so:
12x(-)/(3(2x-1)*12(-1x+2))
We add all the numbers together, and all the variables
12x0/(3(2x-1)*12(-1x+2))
We multiply all the terms by the denominator
12x0
We add all the numbers together, and all the variables
12x
Back to the equation:
+(12x)
We calculate terms in parentheses: +(-3x2/(3(2x-1)*12(-1x+2))), so:
-3x2/(3(2x-1)*12(-1x+2))
We multiply all the terms by the denominator
-3x2
We add all the numbers together, and all the variables
-3x^2
Back to the equation:
+(-3x^2)
We add all the numbers together, and all the variables
(-3x^2)+10x-1=0
We get rid of parentheses
-3x^2+10x-1=0
a = -3; b = 10; c = -1;
Δ = b2-4ac
Δ = 102-4·(-3)·(-1)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
x1=−b−Δ√2ax2=−b+Δ√2a
The end solution:
Δ−−√=88−−√=4∗22−−−−−√=4√∗22−−√=222−−√
x1=−b−Δ√2a=−(10)−222√2∗−3=−10−222√−6
x2=−b+Δ√2a=−(10)+222√2∗−3=−10+222√−6