Math, asked by MandiraBedi2154, 5 months ago

Solve the equation :-
1) 1/x - 1/x+ b = 1/a - 1/ a+b​

Answers

Answered by vanshikaraghuvanshi
6

hope it's helps you ...

✌️✌️✌️✌️✌️✌️✌️

Attachments:
Answered by misscutie94
4

Answer:

\dfrac{1}{x} - \dfrac{1}{x + b} = \dfrac{1}{a} - \dfrac{1}{a + b}

\dfrac{x + b - x}{x(x + b)} =\: \dfrac{a + b - a}{a(a + b)}

\dfrac{b}{x(a + b)} =\: \dfrac{b}{a(x + b)}

\dfrac{1}{{x}^{2} + bx} =\: \dfrac{1}{{a}^{2} + ab}

⇒ x² + bx = a² + ab

⇒x² - a² + bx - ab = 0

⇒( x + a ) ( x - a ) + b ( x - a ) = 0

⇒( x - a )( x + a + b) = 0

⇒ x - a = 0 ; x + a + b = 0

⇒ x = a ; x = - (a + b)

➡ x = a, - (a + b)

Then the required solution is x = a, - (a + b) .


BrainlyHero420: Fanstactic :)
misscutie94: Thanks bhai :)
MandiraBedi2154: Great Answers
misscutie94: Thanks siso :)
MandiraBedi2154: welcome ❤️
Similar questions