solve the equation 2/x-3/y+3/z=10 , 1/x+1/y+1/z=10, 3/x-1/y+2/z=13
Answers
Answer :
x = 1/2 , y = 1 , z = 1/7
Solution :
Here ,
The given equations are ;
2/x - 3/y + 3/z = 10
1/x + 1/y + 1/z = 10
3/x - 1/y + 2/z = 13
Putting 1/x = X , 1/y = Y , 1/z = Z , the given equations will become ;
2X - 3Y + 3Z = 10 ---------(1)
X + Y + Z = 10 --------(2)
3X - Y + 2Z = 13 ----------(3)
Now ,
Adding eq-(1) and 3×(2) , we get ;
=> 2X - 3Y + 3Z + 3×(X + Y + Z) = 10 + 3×10
=> 2X - 3Y + 3Z + 3X + 3Y + 3Z = 10 + 30
=> 5X + 6Z = 40 ----------(4)
Now ,
Adding eq-(2) and (3) , we get ;
=> X + Y + Z + 3X - Y + 2Z = 10 + 13
=> 4X + 3Z = 23 ----------(5)
Now ,
Subtracting eq-(4) from 2×(5) , we get ;
=> 2×(4X + 3Z) - (5X + 6Z) = 2×23 - 40
=> 8X + 6Z - 5X - 6Z = 46 - 40
=> 3X = 6
=> X = 6/3
=> X = 2
=> 1/x = 2
=> x = 1/2
Now ,
Putting X = 2 in eq-(5) , we get ;
=> 4X + 3Z = 23
=> 4×(1/2) + 3Z = 23
=> 2 + 3Z = 23
=> 3Z = 23 - 2
=> 3Z = 21
=> Z = 21/3
=> Z = 7
=> 1/z = 7
=> z = 1/7
Now ,
Putting X = 2 , Z = 7 in eq-(2) , we get ;
=> X + Y + Z = 10
=> 2 + Y + 7 = 10
=> Y + 9 = 10
=> Y = 10 - 9
=> Y = 1
=> 1/y = 1
=> y = 1