Math, asked by ranjanathakur973, 4 months ago

SOLVE THE EQUATION-

21\x +47\y =110
27\x + 21\y=162 x and y is not equal to zero

give me proper solution please​

Answers

Answered by zaaa2
0

Answer

21x+47y=1101)

47x+21y=162..(2)

Multiplying equation (1) by 21, we get

441x+987y=23103)

Also multiplying equation (2) by 47, we get

2209x+987y=7614.(4)

Now, subtracting equation (3) from (4), we have

(2209x+987y)−(441x+987y)=7614−2310

1768x=5304

⇒x=

1768

5304

=3

Substituting the value of x in equation (1), we have

21×3+47y=110

⇒47y=110−63

⇒y=

47

47

=1

Therefore,

x=3 and y=1.

Answered by 12thpáìn
2

 \sf \dfrac{21}{x} +   \dfrac{47}{y}  = 110 \:

 \sf \dfrac{47}{x}  +  \dfrac{21}{y}  = 162

Let,

 \sf \dfrac{1}{x}  = a \:  \:  \: and \:  \:  \:  \dfrac{1}{y}  = b

 \sf\therefore~~ 21a+47b=110 ~~~~~~----(1)  \:  \:  \:  \:  \:  \:  \:  ~~ \\  \sf 47a+21b=162~~~~~~----(2) \:  \:  \:

  • On Solving Equation (1)

 \sf \:  \:  \:  \implies \:  21a+47b=110

 \sf \:  \:  \:  \implies \:  21a=110 - 47b

 \sf \:  \:  \:  \implies \:  a= \dfrac{ 110 - 47b}{21}

  • Substituting the value of a in Equ.(2)

 \sf \:  \:  \:  \implies \:  47 \bigg( \dfrac{110 - 47b}{21}   \bigg) + 21b = 162

 \sf \:  \:  \:  \implies \:   \dfrac{5170 - 2209b}{21}  + 21b = 162

 \sf \:  \:  \:  \implies \:   \dfrac{5170 - 2209b + 441b}{21}  = 162

\sf \:  \:  \:  \implies \:   \dfrac{5170 - 1786b}{21}  = 162

\sf \:  \:  \:  \implies \:   {5170 - 1786b}  =   162 \times 21

\sf \:  \:  \:  \implies \:   {5170 - 1786b}  =   3402

\sf \:  \:  \:  \implies \:   { - 1786b}  =   3402  - 5170

\sf \:  \:  \:  \implies \:   {  \cancel{- 1786}b}  =    \cancel{ - 1786}

\sf \:  \:  \:  \implies \:   b = 1 \\  \\

  •  \sf{Putting  \: the  \: value  \: of  \: b  \: in \:  \bf \: a =  \dfrac{110 - 47b}{21}  }

 {\:  \:  \:  \:  \:  \implies \sf{a =  \dfrac{110 - 47b}{21}}}

 {\:  \:  \:  \:  \:  \implies \sf{a =  \dfrac{110 - 47 \times 1}{21}}}

 {\:  \:  \:  \:  \:  \implies \sf{a =  \dfrac{110 - 47}{21}}}

 {\:  \:  \:  \:  \:  \implies \sf{a =  \dfrac{63}{21}}}

{\:  \:  \:  \:  \:  \implies \sf{a =  3}} \\  \\

therefore,

\sf a= \dfrac{1}{x} = 3  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \: b =  \dfrac{1}{y}  = 1

\bf x =  \dfrac{1}{ 3}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \: y= 1

Similar questions