Math, asked by Roopesha1095, 1 month ago

Solve the equation 2x² + x - 4 = 0 by the method of competing square​

Answers

Answered by BrainlyTwinklingstar
3

Answer

Given that,

\sf {2x}^{2} + x - 4 = 0

Multiplying 2 on both sides,

\sf \dashrightarrow {4x}^{2} + 2x - 8 = 0

Shifting 8 from LHS to RHS,

\sf \dashrightarrow {4x}^{2} + 2x = 8

\sf \dashrightarrow {(2x)}^{2} + 2 \times 2x \times \dfrac{1}{2} + \bigg( \dfrac{1}{2} \bigg)^{2} = 8 + \bigg( \dfrac{1}{2} \bigg)^{2}

Add \sf \bigg( \dfrac{1}{2} \bigg)^2 on both sides.

\sf \dashrightarrow \bigg( 2x + \dfrac{1}{2} \bigg)^2 = \bigg( 8 + \dfrac{1}{4} \bigg) = \dfrac{33}{4} = \bigg( \dfrac{\sqrt{33}}{2} \bigg)^{2}

Take the square root on both sides.

\sf \dashrightarrow 2x + \dfrac{1}{2} = \pm \bigg( \dfrac{\sqrt{33}}{2} \bigg)

\sf \dashrightarrow 2x + \dfrac{1}{2} = \dfrac{\sqrt{33}}{2} \: or \: 2x + \dfrac{1}{2} = \dfrac{- \sqrt{33}}{2}

\sf \dashrightarrow 2x = \bigg( \dfrac{\sqrt{33}}{2} - \dfrac{1}{2} \bigg) = \dfrac{( \sqrt{33} - 1)}{2}

\sf \dashrightarrow 2x = \dfrac{- \sqrt{33}}{2} - \dfrac{1}{2} = \dfrac{- ( \sqrt{33} + 1)}{2}

Shifting 2 from LHS to RHS,

\sf \dashrightarrow x = \dfrac{( \sqrt{33} - 1)}{4} \: or \: x = \dfrac{- ( \sqrt{33} + 2)}{4}

Thus, \sf \dfrac{-1 + \sqrt{33}}{4} and \sf \dfrac{- 1 - \sqrt{33}}{4} are the roots of the given equation.

Similar questions