Math, asked by godlyYrus, 5 months ago

Solve the equation 2x² + x - 4 = 0 , by the method of completing the square .​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

2 {x}^{2}  + x - 4 = 0

 \implies {x}^{2}  +  \frac{x}{2}  - 2 = 0 \\

 \implies {x}^{2}  + 2 \times   \frac{1}{4}  \times x +(  \frac{1}{4} )^{2}  - ({ \frac{1}{4} })^{2}  - 2 = 0  \\

 \implies(x +  \frac{1}{4} )^{2}  -  \frac{33}{16}  = 0

 \implies(x +  \frac{1}{4} )^{2}  -  {( \frac{ \sqrt{33} }{4} })^{2}  = 0

 \implies(x +  \frac{1}{4}  -  \frac{ \sqrt{33} }{4} )(x +  \frac{1}{4}  +  \frac{ \sqrt{33} }{4} ) = 0

 \implies \: x =  \frac{1 -  \sqrt{33} }{4}  \:  \: or \:  \: x =  \frac{1 +  \sqrt{33} }{4}  \\

Similar questions