Math, asked by mitalidgpdas, 3 months ago

Solve the equation : 3(y – 5) – 16y = 12 – 2(y – 3)​

Answers

Answered by kc0440324
1

Answer:

answer

3y-15-16y =12-2y+6

-13y-15= 18-2y

18+15= 13y-2y

33=11y

y=3

please mark me brainliest

Answered by Ladylaurel
20

Answer :-

  • The required number is -3.

Step-by-step explanation:

To Find :-

  • Solve the equation

Given to solve :

  • 3 ( y - 5 ) - 16y = 12 - 2 ( y - 3 )

Solution:

\longrightarrow \: \sf{3 ( y - 5 ) - 16y = 12 - 2 ( y - 3 )}

By simplifying both sides,

\longrightarrow \: \sf{(3)(y) + (3)(-5) - 16y = 12 + (- 2)(y) + ( - 2)( - 3)}

\longrightarrow \: \sf{3y + ( - 15) - 16y = 12 + (- 2)(y) + ( - 2)( - 3)}

\longrightarrow \: \sf{3y + ( - 15) - 16y = 12 + ( - 2y) + ( - 2)( - 3)}

\longrightarrow \: \sf{3y + ( - 15) - 16y = 12 + ( - 2y) + 6}

\longrightarrow \: \sf{3y  - 15 - 16y = 12  - 2y + 6}

By evaluating the like terms step-by-step on L.H.S,

\longrightarrow \: \sf{(3y - 16y) - 15 = 12 - 2y + 6}

\longrightarrow \: \sf{ - 13y - 15 = 12 - 2y + 6}

By evaluating the like terms step-by-step on R.H.S,

\longrightarrow \: \sf{ - 13y -  15 = - 2y + (12 + 6)}

\longrightarrow \: \sf{ - 13y -  15 = - 2y + 18}

By transposing -15 to R.H.S and evaluating

\longrightarrow \: \sf{ - 13y = - 2y + 18 + 15}

\longrightarrow \: \sf{ - 13y = - 2y + 33}

By transposing -2y to L.H.S and evaluating,

\longrightarrow \: \sf{ - 13y + 2y = 33}

\longrightarrow \: \sf{ - 11y = 33}

\longrightarrow \: \sf{y = \dfrac{- 33}{11}}

\longrightarrow \: \sf{y = \cancel{ \dfrac{- 33}{11}}}

\longrightarrow \: \underline{ \boxed{\sf{ \red{y =  - 3}}}}

Hence, The required number is -3.

____________________________________

Now, Verification

  • 3(y – 5) – 16y = 12 – 2(y – 3)

We have,

  • L.H.S = 3(y – 5) – 16y
  • R.H.S = 12 – 2(y – 3)

By putting the value of y on L.H.S and R.H.S seperately,

  • L.H.S :-

  \longrightarrow \:  \sf{3 ( y - 5 ) - 16y}

By putting the value of y,

  \longrightarrow \:  \sf{3 ( - 3 - 5 ) - (16)( - 3)}

  \longrightarrow \:  \sf{3 ( - 8) - (16)( - 3)}

  \longrightarrow \:  \sf{ - 24 - (16)( - 3)}

  \longrightarrow \:  \sf{ - 24 - ( - 48)}

  \longrightarrow \:  \sf{ - 24 + 48}

  \longrightarrow \: { \boxed{ \sf{24}}}

  • R.H.S :-

 \longrightarrow \:  \sf{12 - 2 ( y - 3 )}

By putting the value of y,

 \longrightarrow \:  \sf{12 - 2 ( - 3 - 3)}

 \longrightarrow \:  \sf{12 - 2 ( - 6)}

 \longrightarrow \:  \sf{12 + 12}

 \longrightarrow \:  \boxed{ \sf{24}}

Now, we have,

  • L.H.S = 24
  • R.H.S = 24

L.H.S = R.H.S

Hence, Verified!

Similar questions