Math, asked by awdheshbgs1234, 5 months ago

solve the equation...

Attachments:

Answers

Answered by snehitha2
3

Answer :

The required value of x is -6/19

Step-by-step explanation :

Given :

\sf \dfrac{x}{6}+3(x+1)=2

To find :

the value of x

Solution :

  \sf \dfrac{x}{6}+3(x+1)=2 \\\\ \sf \dfrac{x}{6}+3x + 3=2 \\\\ \sf \dfrac{x}{6}+3x=2-3 \\\\ \sf \dfrac{x}{6}+3x=-1

LCM = 6

  \sf \dfrac{x}{6}+\bigg(3x \times \dfrac{6}{6}\bigg)=-1 \\\\ \sf \dfrac{x}{6}+\dfrac{18x}{6}=-1 \\\\ \sf \dfrac{x+18x}{6}=-1 \\\\ \sf \dfrac{19x}{6}=-1 \\\\ \sf 19x=-1 \times 6 \\\\ \sf 19x=-6 \\\\ \sf x=\dfrac{-6}{19}

The required value of x is -6/19

Verification :

Put x = -6/19,

\sf \dfrac{x}{6}+3(x+1)=2 \\\\ \sf \dfrac{\dfrac{-6}{19}}{6}+3\bigg(\dfrac{-6}{19}+1\bigg)=2 \\\\ \sf \dfrac{-6}{6 \times 19} +3\bigg(\dfrac{-6+19}{19}\bigg)=2 \\\\ \sf \dfrac{-1}{19}+3\bigg(\dfrac{13}{19}\bigg)=2 \\\\ \sf \dfrac{-1}{19}+\dfrac{39}{19}=2 \\\\ \sf \dfrac{-1+39}{19}=2 \\\\ \sf \dfrac{38}{19}=2 \\\\ \sf \dfrac{19 \times 2}{19}=2 \\\\ \sf 2=2 \\\\ \rm LHS=RHS

Hence verified!

Answered by ImperialGladiator
6

{\blue{\underline{\underline{\purple{\textsf{\textbf{Answer : }}}}}}}

➙ The value of x is \sf-\frac{6}{19} {\boxed{\green{\checkmark{}}}}

{\blue{\underline{\underline{\purple{\textsf{\textbf{Step-by-step explanation: }}}}}}}

Given equation :

 \sf  \frac{x}{6}  + 3(x + 1) = 2

Solving for x :

\sf : \implies  \frac{x}{6}  + 3(x + 1) = 2\\

\sf : \implies  \frac{x}{6}  + 3x + 3 = 2\\

\sf : \implies  \frac{x + 18x + 18}{6}  = 2\\

\sf : \implies  \frac{19x + 18}{6} = 2\\

\sf : \implies 19x + 18 = 12\\

\sf : \implies 19x = 12 - 18\\

\sf : \implies 19x =  - 6\\

\sf : \green{ \implies x =  \frac{ - 6}{19} }

{{\underline{\underline{{\textsf{\textbf{Check point : }}}}}}}

: \sf \implies  \frac{x}{6}  + 3(x + 1) = 2 \\

: \sf \implies \frac{ \frac{ - 6}{19} }{6}  + 3 \bigg( \frac{ - 6}{19}  + 1 \bigg) = 2 \\

: \sf \implies \frac{ - 6}{19 \times 6}  + 3 \bigg(  \frac{ - 6 + 19}{19} \bigg) = 2 \\

: \sf \implies \frac{ - 1}{19}  + 3 \bigg( \frac{13}{19}  \bigg) = 2 \\

: \sf \implies \frac{ - 1}{19}  +  \frac{39}{19}  = 2 \\

: \sf \implies \frac{ - 1 + 39}{19}  = 2 \\

: \sf \implies \frac{38}{19}  = 2 \\

: \sf \implies 2 = 2

As we getting L. H. S. = R. H. S.

Hence proved {\boxed{\green{\checkmark{}}}}

Similar questions