Math, asked by swathi6695, 4 months ago

solve the equation 3x^2-4x+20/3=0​

Answers

Answered by lk4507099
1

Answer:

Your answer in the above picture

Attachments:
Answered by suraj5070
187

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \sf Solve \:the \:equation:

 \sf \bf 3{x}^{2}-4x+\dfrac{20}{3}=0

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf\implies 3{x}^{2}-4x+\dfrac{20}{3}=0

{\underbrace {\overbrace {\color {orange} {\bf Multiply \:both \:sides \:by\:3}}}}

 \sf \bf\implies 3\bigg( 3{x}^{2}-4x+\dfrac{20}{3}\bigg)=3\bigg(0\bigg)

 \sf \bf\implies 3 \times 3{x}^{2}-3 \times 4x+\cancel {3} \times \dfrac{20}{\cancel {3}}=3 \times 0

 \sf \bf\implies 9{x}^{2}-12x+20=0

{\color{gold} {\underline{ \sf It \:  is \:  in  \: the  \: form \:  of \: {{\underbrace \color{red} \: a{x}^{2} +bx+c=0}}}}}

 {\boxed {\boxed {\color {blue} { \sf \bf x=\dfrac{-b\pm\sqrt{{b}^{2}-4ac}}{2a}}}}}

 \sf \bf a=9\\\sf \bf b=\Big(-12\Big)\\\sf \bf c=20

{\underbrace {\overbrace {\color {green} {\sf\bf Substitute \:the \:values}}}}

 \sf \bf\implies x=\dfrac{-\Big(-12\Big)\pm\sqrt{{\Big(-12\Big)}^{2}-4\Big(9\Big)\Big(20\Big)}}{2\Big(9\Big)}

 \sf \bf\implies x=\dfrac{12\pm\sqrt{144-720}}{18}

 \sf \bf\implies x=\dfrac{12\pm\sqrt{-576}}{18}

 \sf \bf\implies x=\dfrac{12\pm\sqrt{-1 \times 576}}{18}

 \sf \bf\implies x=\dfrac{12\pm\sqrt{-1}\times \sqrt{576}}{18}

 \sf \bf\implies x=\dfrac{12\pm i\times 24}{18}

 \sf \bf\implies x=\dfrac{12\pm 24i}{18}

 \sf \bf\implies x=\dfrac{6\Big(2\pm 4i\Big)}{18}

 \sf \bf\implies x=\dfrac{2\pm 4i}{3}

\implies{\boxed {\color {purple} { \sf \bf x=\dfrac{2+4i}{3}\:\:or\:\:x=\dfrac{2-4i}{3}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\color {red}{\tt Quadratic \:equation}}

  • \sf Second\: degree\: equations\: are \:called\\\sf quadratic\: equations.
  • \sf a{x}^{2}+bx+c=0\: is\: the\: standard\: form\: of \\\sf quadratic\: equation\: of\: variable\: x. a, b, c\\\sf are\: constants\: and\: a\neq 0
Similar questions