Math, asked by gsmitra12, 1 month ago

Solve the equation
3x +2y+2= 0.5x - y -27=0​

Answers

Answered by MathCracker
10

Question :-

Solve the equation

3x +2y+2= 0.5x - y -27=0

Solution :-

Given :

  • 3x + 2y + 2 = 0
  • 0.5x - y - 27 = 0

Need to find :

  • x and y

By first,

\sf\implies{3x + 2y +  2 = 0}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\\sf\implies{3x + 2y =  - 2} -  -  - (1)

By second,

\sf\implies{}0.5x - y - 27 = 0  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf\implies{}0.5x - y = 27 -  -  - (2)

Multiplying equation (2) by 2

\sf\implies{}2(0.5x - y = 27) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\sf\implies{1x - 2y = 54}  -  -  - (3)

Now, we have,

 \red{\sf:\longmapsto{We \: have \begin{cases}  \sf3x + 2y = -2    \:   -  -  - (1)\\  \sf x - 2y = 54 \:  \:  \:  \:  -  -  - (3) \end{cases}}}

Adding both equation,

\sf:\longmapsto{3x + 2y + (x - 2y) =  - 2 + 54} \\  \\ \sf:\longmapsto{3x + x + 2y - 2y = 52} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{4x = 52} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\  \\ \sf:\longmapsto{}x =  \frac{52}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{x = 13} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substitute x = 13 in equation (3)

\sf:\longmapsto{}13 - 2y = 54  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ - 2y = 54 - 1}3 \\  \\ \bf:\longmapsto{} \red{y =  \frac{41}{ - 2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\red{\sf:\longmapsto{ \begin{cases}  \sf{x = 13}\\   \\ \sf {y =  \large{\frac{41}{-2}}}\end{cases}}}

Verification :-

Substituting x and y in equation (3)

 \sf :  \longmapsto{13 \:   \cancel{- 2} \times  \frac{41} { \cancel{- 2}}  = 54} \\  \\ \sf :  \longmapsto{13 + 41= 54} \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf :  \longmapsto{} \red{54 = 54 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence Verified

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

1. 0.5x - (0-8-0-2x) = 0-2-0-3x

https://brainly.in/question/36617575

2. Solve for y

5x+y=18

-4x+2y=8

2y+0.5X=16

please show work

https://brainly.in/question/28541811

Answered by IIMrVelvetII
12

Question :- Solve the equation.

 \sf{3x + 2y + 2 = 0.5x - y - 27 = 0}

Given :-

  •  \sf{→3x + 2y + 2 = 0}
  •  \sf{→0.5x - y - 27 = 0}

To find :-

  • x and y

Rearranging the ❶ equation,

 \sf{→3x + 2y + 2 = 0}

 \sf {\therefore 3x + 2y =  - 2}-----❶

Rearranging the ❷ equation,

 \sf{→0.5x - y - 27 = 0}

 \sf{ \therefore 0.5x - y = 27}-----❷

Multiplying equation ❷ by 2,

 \sf{→2(0.5x - y = 27)}

 \sf{→(1x - 2y = 54)}-----❸

We now have,

 \sf {→3x + 2y =  - 2}-----❶

 \sf{→x - 2y = 54}-----❸

By elimination method adding the equation ❶ and equation ❸,

 \sf {3x + 2y =  - 2 }\\  \sf{ \:  \: x - 2y = \:  54} \\------- \\  \sf{4x  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: 52} \\ -------

We get,

 \sf{→x =  \frac{52}{4} }

 \sf \fbox{→x = 13}

Now, substituting the value of x = 13 in eq ❸,

 \sf{→13 - 2y = 54}

 \sf{→ - 2y = 54 - 13}

 \sf{→ - 2y = 41}

 \sf {→y = \frac{41}{ - 2}}

Hence  \sf {x = 13} and  \sf {y = \frac{41}{ - 2}}.

Verification :-

 \sf{→13 - 2( \frac{41}{ - 2})= 54}

 \sf{→13 + 41= 54}

 \sf{→54 = 54}

LHS = RHS.

Hence Verified.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more on brainly :-

  • https://brainly.in/question/44302382
Similar questions