Math, asked by sharmaakansha88591, 7 months ago

solve the equation 3x-2y=5 5x-y=3
by substitute method​

Answers

Answered by tina3232
0

Answer:

Question : (3x-2y=5 ; 5x-y=3) Solve by substitution method

▶ Explanation :-

=> 3x - 2y = 5 -------- ( 1 )

=> 5x - y = 3 --------- ( 2 )

=> 5x - y = 3

=> 5x = 3 + y

=> x = 3 + y / 5 -------- ( 3 )

Substituting eq ( 3 ) in eq ( 1 )

=> 3 ( 3 + y / 5 ) - 2y = 5

=> 9 + 3y / 5 - 2y = 5

=> 9 + 3y - 10y / 5 = 5

=> 9 - 7y = 5 × 5

=> 9 - 7y = 25

=> - 7y = 16

=> y = - 16 / 7

Substituting value of y in eq ( 3 )

=> x = 3 + ( - 16 / 7 ) / 5

=> x = 3 - 16 / 7 /5

=> x = 21 - 16 / 35

=> x = 5 / 35

=> x = 1 / 7

Answered by TheProphet
28

S O L U T I O N :

\underline{\bf{Given\::}}

  • 3x - 2y = 5...............(1)
  • 5x - y = 3.................(2)

\underline{\bf{Explanation\::}}

From equation (1),we get;

\mapsto\tt{3x - 2y = 5}

\mapsto\tt{3x = 5+2y}

\mapsto\tt{x = \dfrac{5+2y}{3} ................(3)}

Putting the value of x in equation (2),we get;

\mapsto\tt{5\bigg(\dfrac{5+2y}{3} \bigg)-y = 3}

\mapsto\tt{\dfrac{25+10y}{3} -y = 3}

\mapsto\tt{25 + 10y - 3y = 9}

\mapsto\tt{25 + 7y= 9}

\mapsto\tt{ 7y= 9-25}

\mapsto\tt{ 7y= -16}

\mapsto\bf{y = -16/7}

Putting the value of y in equation (3),we get;

\mapsto\tt{x = \dfrac{5+2\bigg(-\dfrac{16}{7} \bigg)}{3} }

\mapsto\tt{x = \dfrac{5+\bigg(-\dfrac{32}{7} \bigg)}{3} }

\mapsto\tt{x = \dfrac{5-\dfrac{32}{7} }{3} }

\mapsto\tt{x = \dfrac{\dfrac{35-32}{7} }{3} }

\mapsto\tt{x = \dfrac{\dfrac{3}{7} }{3} }

\mapsto\tt{x = \dfrac{\cancel{3}}{7} \times \dfrac{1}{\cancel{3} }}

\mapsto\bf{x = 1/7}

Thus,

The value of x & y will be 1/7 and -16/7 .

Similar questions