Math, asked by achaware2004, 1 year ago

solve the equation 3x+y+4=0 , 6x-2y+4=0 by substitution

Answers

Answered by arunkumar516235
3

Step-by-step explanation:

check this image.

here is your answer.

Attachments:

arunkumar516235: check it
achaware2004: thanks
Answered by AbhijithPrakash
9

Answer:

3x+y+4=0,\:6x-2y+4=0\quad :\quad y=-1,\:x=-1

Step-by-step explanation:

\begin{bmatrix}3x+y+4=0\\ 6x-2y+4=0\end{bmatrix}

\mathrm{Isolate}\:x\:\mathrm{for}\:3x+y+4=0

3x+y+4=0

\mathrm{Subtract\:}y\mathrm{\:from\:both\:sides}

3x+y+4-y=0-y

\mathrm{Simplify}

3x+4=-y

\mathrm{Subtract\:}4\mathrm{\:from\:both\:sides}

3x+4-4=-y-4

\mathrm{Simplify}

3x=-y-4

\mathrm{Divide\:both\:sides\:by\:}3

\dfrac{3x}{3}=-\dfrac{y}{3}-\dfrac{4}{3}

\mathrm{Simplify}

x=\dfrac{-y-4}{3}

\mathrm{Subsititute\:}x=\dfrac{-y-4}{3}

\begin{bmatrix}6\cdot \dfrac{-y-4}{3}-2y+4=0\end{bmatrix}

\mathrm{Isolate}\:y\:\mathrm{for}\:6\dfrac{-y-4}{3}-2y+4=0

6\cdot \dfrac{-y-4}{3}-2y+4=0

6\cdot \dfrac{-y-4}{3}=2\left(-y-4\right)

2\left(-y-4\right)-2y+4=0

\mathrm{Subtract\:}4\mathrm{\:from\:both\:sides}

2\left(-y-4\right)-2y+4-4=0-4

\mathrm{Simplify}

2\left(-y-4\right)-2y=-4

\mathrm{Expand\:}2\left(-y-4\right)-2y

2\left(-y-4\right)-2y

\mathrm{Expand}\:2\left(-y-4\right):\quad -2y-8

=-2y-8-2y

\mathrm{Simplify}\:-2y-8-2y

\mathrm{Group\:like\:terms}

=-2y-2y-8

\mathrm{Add\:similar\:elements:}\:-2y-2y=-4y

=-4y-8

-4y-8=-4

\mathrm{Add\:}8\mathrm{\:to\:both\:sides}

-4y-8+8=-4+8

\mathrm{Simplify}

-4y=4

\mathrm{Divide\:both\:sides\:by\:}-4

\dfrac{-4y}{-4}=\dfrac{4}{-4}

\mathrm{Simplify}

y=-1

\mathrm{For\:}x=\dfrac{-y-4}{3}

\mathrm{Subsititute\:}y=-1

x=\dfrac{-\left(-1\right)-4}{3}

\dfrac{-\left(-1\right)-4}{3}

\mathrm{Apply\:rule}\:-\left(-a\right)=a

=\dfrac{1-4}{3}

\mathrm{Subtract\:the\:numbers:}\:1-4=-3

=\dfrac{-3}{3}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}

=-\dfrac{3}{3}

\mathrm{Apply\:rule}\:\dfrac{a}{a}=1

=-1

x=-1

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=-1,\:x=-1

Attachments:

deepsen640: omg great answer
AbhijithPrakash: Thanks!!
Similar questions