Math, asked by priyamvada32, 10 months ago

solve the equation √3x²-√2x+3√3=0​

Answers

Answered by brainlyboy1248
2

Given : \sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0Given:

3

x

2

−2

2

x−2

3

=0

On comparing with ax^2 + bx + c = 0, we get

= > a = \sqrt{3},b = -2\sqrt{2},c = -2\sqrt{3}=>a=

3

,b=−2

2

,c=−2

3

(1)

x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}x=

2a

−b+

b

2

−4ac

= > \frac{-(-2\sqrt{2})+\sqrt{(-2\sqrt{2})^2 - 4\sqrt{3}(-2\sqrt{3})}}{2\sqrt{3}}=>

2

3

−(−2

2

)+

(−2

2

)

2

−4

3

(−2

3

)

= > \frac{2\sqrt{2}\sqrt{(2\sqrt{2})^2 + 4\sqrt{3} * 2\sqrt{3}}}{2\sqrt{3}}=>

2

3

2

2

(2

2

)

2

+4

3

∗2

3

= > \frac{2\sqrt{2}+\sqrt{(2\sqrt{2})^2 + 24}}{2\sqrt{3}}=>

2

3

2

2

+

(2

2

)

2

+24

= > \frac{2\sqrt{2} + \sqrt{32}}{2\sqrt{3}}=>

2

3

2

2

+

32

= > \frac{2\sqrt{2} + 4\sqrt{2}}{2\sqrt{3}}=>

2

3

2

2

+4

2

= > \frac{6\sqrt{2}}{2\sqrt{3}}=>

2

3

6

2

= > \frac{3\sqrt{2}}{\sqrt{3}}=>

3

3

2

= > \sqrt{6}=>

6

---------------------------------------------------------------------------------------------------------------

(2)

= > x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}=>x=

2a

−b−

b

2

−4ac

= > x = \frac{-(-2\sqrt{2})-\sqrt{(2\sqrt{2})^2+4\sqrt{3}*2\sqrt{3}}}{2\sqrt{3}}=>x=

2

3

−(−2

2

)−

(2

2

)

2

+4

3

∗2

3

= >\frac{2\sqrt{2}-{4\sqrt{2}}}{2\sqrt{3}}=>

2

3

2

2

−4

2

= > \frac{-2\sqrt{2}}{2\sqrt{3}}=>

2

3

−2

2

= > -\sqrt{\frac{2}{3}}=>−

3

2

---------------------------------------------------------------------------------------------------------------

Therefore the required quadratic solutions are|:

= > x = \boxed {\sqrt{6}, -\sqrt{\frac{2}{3}} }=>x=

6

,−

3

2

Hope this helps

Answered by Anonymous
2

Answer:

x ={-b+-√(b²-4ac)}/2a

x=(√2+-6)/6

x1=√2/6+1. X2=√2/6-1

Similar questions