Math, asked by VijayaLaxmiMehra1, 1 year ago

Solve the equation ( - 4 ) + ( - 1 ) + 2 + .... + x = 437.

Answers

Answered by Anonymous
69

\underline{\mathfrak{Solution : }}


\textsf{The above series forms an A.P.}



\mathsf{Where, } \\ \\<br /><br />\mathsf{ \implies First \: term(a) \: = \: -4 } \\ \\<br /><br />\mathsf{\implies Last \: term (l) \: = \: x } \\ \\<br /><br />\mathsf{\implies Common \: difference (d) \: = \: (-1) \: - \: (-4)}  \\  \\ \mathsf{   \qquad \qquad \qquad \qquad  \qquad \qquad  \: = \: -1 \: + \: 4 }\:  \\ \\  \mathsf{ \qquad \qquad \qquad \qquad \qquad \qquad \: = \: 3 }


\mathsf{Let, no. \: of \: terms \: is \:  n.  }




\mathsf{Using \: Formula, } \\ \\<br /><br />\mathsf{ \implies l \: = \: a \: + \: (n \: - \: 1)d } \\ \\<br /><br />\mathsf{\implies x \: = \: (-4) \: + \: (n \: - \: 1)3 } \\ \\<br /><br />\mathsf{\implies x \: = \: -4 \: + \: 3n \: - \: 3 } \\ \\<br /><br />\mathsf{\implies x\: = \: 3n \: - \: 7 } \\ \\<br /><br />\mathsf{\implies x\: + \: 7 \: = \: 3n } \\ \\<br /><br />\mathsf{\therefore \quad n \: = \: \dfrac{( x \: + \: 7)}{3}}<br />



\underline{\mathsf{Now, }} \\ \\<br /><br />\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}( a \: + \: l )}  \\ \\\textsf{Plug the value of \textbf{n}, } \\  \\  \\ <br /><br />\mathsf{\implies 437 \: = \: \dfrac{ \quad(\dfrac{x\: + \: 7}{3}) \quad}{2}( -4 \: + \: x )}<br />




 \\ \mathsf{\implies 437 \: \times \: 2 \: = \: \dfrac{(x \: + \: 7)}{3}(x \: - \: 4 )} \\ \\<br /><br />\mathsf{\implies 437 \times \: 2 \: \times \: 3 \: = \: (x \: + \: 7 )( x \: - \: 4 )}<br />


 \\ \mathsf{\implies 2622 \: = \: {x}^{2} \: - \: 4x \: + \: 7x \: - \: 28 }  \\  \\  \mathsf{ \implies  {x}^{2} \:  +  \: 3x \:  -  \: 28 \:  -  \: 2622  \:  =  \: 0 } \\  \\  \mathsf{ \implies  {x}^{2}  \:  +  \: 3x \:  -  \: 2650 \:  =  \: 0}



\mathsf{Here, } \\ \\<br /><br />\mathsf{\implies Coefficient \: of \: {x}^{2}(a) \: = \: 1 } \\ \\<br /><br />\mathsf{\implies Coefficient \: of \: x (b ) \: = \: 3 } \\ \\<br /><br />\mathsf{\implies Constant \: term(c) \: = \: -2650 }



\textsf{Using Quadratic  Formula , }  \\  \\  \mathsf{ \implies x \:  =  \:  \dfrac{ - b \:  \pm \: \sqrt{  \: {b}^{2} \:  -  \: 4ac \:  } }{2a} }


  \\ \mathsf{ \implies x \:  =  \:  \dfrac{ - 3 \:  \pm \:  \sqrt{ \: ( {3}^{2} ) \:  -  \: 4 \:  \times  \: 1 \:  \times  \: ( - 2650)} }{2 \:  \times  \: 1} } \\  \\  \\  \mathsf{ \implies x \:  =  \:  \dfrac{ - 3 \:  \pm \:  \sqrt{ \: 9 \:  +  \: 10600} }{2}}




  \\ \mathsf{ \implies x \:  =  \:  \dfrac{ - 3 \:  \pm \:  \sqrt{ \: 10609} }{2} } \\  \\  \\  \mathsf{ \implies x \:  =  \:  \dfrac{ - 3 \:  \pm \: 103}{2}}



  \\ \mathsf{\implies x \: = \: \dfrac{-3 \: + \: 103}{2} \quad, \implies x \: = \: \dfrac{-3 \: - \: 103}{2}} \\ \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{100}{2} \quad, \implies x \: = \: \dfrac{-106}{2}} \\ \\ \\<br /><br />\mathsf{\implies x \: = \: 50 \: or \: (-53 ) \: [ Not \: Possible ]}<br />



\boxed{\underline{\mathsf{Therefore, x \: is \: equal \: to \: 50.}}}<br />



FuturePoet: Well done !!!
FuturePoet: Easily understandable and Great !!!!!
Anonymous: Tnx Sista !!
Answered by siddhartharao77
71

Given Equation is (-4) + (-1) + 2 + .... + x = 437.

Observe carefully, the given equation is an arithmetic equation i.e arithmetic series.

Here, First term a = -4.

Common difference d = -1 + 4 = 3.

Sn = 437.

We know that sum of first n terms is given by:

⇒ Sn = (n/2)[2a + (n - 1) * d]

⇒ 437 = (n/2)[-8 + (n - 1) * 3]

⇒ 437  = (n/2)[-8 + 3n - 3]

⇒ 437 = (n/2)[3n - 11]

⇒ 874 = n[3n - 11]

⇒ 874 = 3n^2 - 11n

⇒ 3n^2 - 11n - 874 = 0

⇒ 3n^2 - 57n + 46n - 874 = 0

⇒ 3n(n - 19) + 46(n - 19) = 0

⇒ (n - 19)(3n + 46) = 0

⇒ n = 19,n = -46/3[neglect -ve values]

⇒ n = 19


Now,

We know that Sum of n terms is also equal to the formula:

⇒ Sn = (n/2)[a + l]

⇒ 437 = (19/2)[-4 + l]

⇒ 874 = 19[-4 + l]

⇒ 46 = -4 + l

⇒ 46 + 4 = l

⇒ l = 50.


Therefore, the final answer is 50.


Hope this helps!


FuturePoet: Nice
siddhartharao77: :-)
Similar questions