Solve the equation ( - 4 ) + ( - 1 ) + 2 + .... + x = 437.
Answers
Answered by
69
FuturePoet:
Well done !!!
Answered by
71
Given Equation is (-4) + (-1) + 2 + .... + x = 437.
Observe carefully, the given equation is an arithmetic equation i.e arithmetic series.
Here, First term a = -4.
Common difference d = -1 + 4 = 3.
Sn = 437.
We know that sum of first n terms is given by:
⇒ Sn = (n/2)[2a + (n - 1) * d]
⇒ 437 = (n/2)[-8 + (n - 1) * 3]
⇒ 437 = (n/2)[-8 + 3n - 3]
⇒ 437 = (n/2)[3n - 11]
⇒ 874 = n[3n - 11]
⇒ 874 = 3n^2 - 11n
⇒ 3n^2 - 11n - 874 = 0
⇒ 3n^2 - 57n + 46n - 874 = 0
⇒ 3n(n - 19) + 46(n - 19) = 0
⇒ (n - 19)(3n + 46) = 0
⇒ n = 19,n = -46/3[neglect -ve values]
⇒ n = 19
Now,
We know that Sum of n terms is also equal to the formula:
⇒ Sn = (n/2)[a + l]
⇒ 437 = (19/2)[-4 + l]
⇒ 874 = 19[-4 + l]
⇒ 46 = -4 + l
⇒ 46 + 4 = l
⇒ l = 50.
Therefore, the final answer is 50.
Hope this helps!
Similar questions