Solve the equation 4x+5/4 +3x+ 5/6 >= 2X-7/2
Answers
Given equation:-
Solution:-
Adding similar terms::
Taking LCM::
Now transporting LHS and RHS::
Solving by taking LCM::
» This is the required answer.
Answer:
Given equation:-
\implies\sf 4x+\dfrac 5 4+3x+\dfrac5 6 =2x-\dfrac 7 2⟹4x+
4
5
+3x+
6
5
=2x−
2
7
\rule{200}{1}
Solution:-
\implies\sf 4x+\dfrac 5 4+3x+\dfrac5 6 =2x-\dfrac 7 2⟹4x+
4
5
+3x+
6
5
=2x−
2
7
Adding similar terms::
\implies\sf\Big (4x+3x\Big)+\Bigg(\dfrac 5 4+\dfrac5 6\Bigg) =2x-\dfrac 7 2⟹(4x+3x)+(
4
5
+
6
5
)=2x−
2
7
\implies\sf\Big (7x\Big)+\Bigg(\dfrac 5 4+\dfrac5 6\Bigg) =2x-\dfrac 7 2⟹(7x)+(
4
5
+
6
5
)=2x−
2
7
Taking LCM::
\implies\sf 7x+\Bigg(\dfrac{15+10}{12}\Bigg) =2x-\dfrac 7 2⟹7x+(
12
15+10
)=2x−
2
7
\implies\sf 7x+\Bigg(\dfrac{25}{12}\Bigg) =2x-\dfrac 7 2⟹7x+(
12
25
)=2x−
2
7
Now transporting LHS and RHS::
\implies\sf\Big( 7x-2x\Big)+\Bigg(\dfrac{25}{12}+\dfrac 7 2\Bigg) =0⟹(7x−2x)+(
12
25
+
2
7
)=0
Solving by taking LCM::
\implies\sf\Big( 5x\Big)+\Bigg(\dfrac{25+42}{12}\Bigg) =0⟹(5x)+(
12
25+42
)=0
\implies\sf\Big( 5x\Big)+\Bigg(\dfrac{67}{12}\Bigg) =0⟹(5x)+(
12
67
)=0
\implies\sf5x=-\dfrac{67}{12}⟹5x=−
12
67
\implies\sf x=-\dfrac{67}{12\times 5}⟹x=−
12×5
67
\underline{\boxed{\implies\bf{\red{ x=-\dfrac{67}{60}}}}}
⟹x=−
60
67
» This is the required answer.