Math, asked by bhatmilad376, 5 months ago

solve the equation 5x-3y =1 2x +5y=19​

Answers

Answered by alok1381823
0

Answer:

Step-by-step explanation:

5x-3y = 1

5x = 1 + 3y

x = 1+3y / 5

2x+5y=19

2x=19-5y

x=19-5y / 2

1+3y / 5 = 19-5y /2

2(1+3y) = 5(19-5y)    ( by cross multiplying)

2+6y = 95-25y

6y+25y = 95-2

31y=93

y = 93/31

y=3

Answered by amankumaraman11
0

Given,

 \large \rm{}5x-3y =1  \:  \:  \:  \:  \cdots(i) \\ \large \rm{} 2x +5y=19\:  \:  \:  \:  \cdots(ii)  \\  \\

Multiplying Equation (i) & Equation (ii) with 2 and 5 respectively, we get,

 \large \rm{}10x - 6y = 2  \:  \:  \:  \:  \cdots(iii) \\  \large\rm  10x + 25y = 95\:  \:  \:  \:  \cdots(iv)\\

Subtracting Equation (iii) from Equation (iv), we get,

 \to \tt{}10x + 25y - (10x - 6y) = 95 - 2 \\ \to \tt{} \cancel{10x} +2 5y -  \cancel{10x} + 6y = 93 \\  \to \tt{}(25 + 6)y = 93 \\  \to \tt{}31y = 93 \\  \\ \to \tt{} \frac{\cancel{31}y}{ \cancel{31}}  =  \frac{93}{31}  \\  \\ \to \tt{}y =  \frac{93}{31}  \\  \\ \to \tt{}y =   \sf\red{3}

Now, Putting the value of y in equation (i), we get,

 \bf{}x =  \frac{1 + 3y}{5}  \\  \\ \bf x =  \frac{1 + 3(3)}{5}  =  \frac{1 + 9}{5}  \\  \\  \bf{}x =  \frac{10}{5}  \:  \:   = \sf  \red2

Thus,

Value of x = 2

Value of y = 3

Similar questions