Math, asked by InnocentBOy143, 1 year ago

Solve the equation 6(\frac{2x+5}{x+1} )-4(\frac{x+1}{2x+5} )-5=0.

Answers

Answered by Anonymous
23

SOLUTION:-

Let 2x+5/x+1= y

Therefore,

The equation can be written as;

6y - 4 \times  \frac{1}{y }  - 5 = 0 \\  \\ 6 {y}^{2}  - 5y - 4 = 0 \\  \\ 6 {y}^{2}  - 8y + 3 y - 4 = 0 \\  \\ 2y(3y  - 4) + 1(3y - 4) = 0 \\  \\ (3y - 4)(2y + 1) = 0 \\  \\ 3y - 4 = 0 \:  \: or \:  \: 2y+ 1 = 0 \\  \\ 3y  = 4 \:  \: or \:  \: 2y  =  - 1 \\  \\ y =  \frac{4}{3}  \:  \: or \:  \: y =  -  \frac{1}{2}

The value of y is 4/3

If x= 4/3

 \frac{2x + 5}{x + 1}  =  \frac{4}{3}  \\  (cross \: multiplication) \\  \\  6x + 15 = 4x + 4 \\  \\ 6x - 4x = 4 - 15 \\  \\ 2x =  - 11 \\  \\  x =  \frac{ - 11}{2}

&

y= -1/2, then

 \frac{2x  + 5}{x + 1 } =  -  \frac{1}{2}  \\  \\ 4x + 10 =  - x - 1 \\  \\ 4x +x =  - 1 - 10 \\  \\ 5x =  - 11 \\  \\ x =  \frac{ - 11}{5}

Thus,

Solution set of given equation is(-11/2,-11/5).

Similar questions