Math, asked by ThomasBrainliestUser, 1 month ago

Solve the equation: 9p+7/2 - (1+p - p-2/7) = 35​

Answers

Answered by Salmonpanna2022
10

Step-by-step explanation:

 \bf \underline{Given-} \\

{ \sf \dfrac{9p + 7}{2}  -   \left(1 + p -  \dfrac{p - 2}{7} \right) = 35}

 \bf \underline{To\: find-} \\

\textsf{the value of P = ?}\\

 \bf \underline{Solution-} \\

{  \:  \:  \:  \:  \:  \sf \dfrac{9p + 7}{2}  -   \left(1 + p -  \dfrac{p - 2}{7} \right) = 35}

{  \:  \:  \:  \:  \:  :  \implies\sf \dfrac{9p + 7}{2}  -   \left( \dfrac{7 +7 p -  (p - 2)}{7} \right) = 35}

{  \:  \:  \:  \:  \:  :  \implies\sf \dfrac{9p + 7}{2}  -   \left( \dfrac{7 +7 p -  p  +  2}{7} \right) = 35}

{  \:  \:  \:  \:  \:  :  \implies\sf \dfrac{9p + 7}{2}  -    \dfrac{9+6 p }{7}  = 35}

{  \:  \:  \:  \:  \:  :  \implies\sf \dfrac{7(9p + 7) - 2(9 + 6p)}{2 \times 7}    = 35}

{  \:  \:  \:  \:  \:  :  \implies\sf \dfrac{63p + 49 - 18  -  12p}{14}    = 35}

{  \:  \:  \:  \:  \:  :  \implies\sf 51p + 31    = 35 \times 14}

{  \:  \:  \:  \:  \:  :  \implies\sf 51p + 31    =4 90}

{  \:  \:  \:  \:  \:  :  \implies\sf 51p    = 490- 31}

{  \:  \:  \:  \:  \:  :  \implies\sf \cancel{ 51} ^{1}   p  = \cancel{ 459}} ^{9}

{  \:  \:  \:  \:  \:  :  \implies\bf p    = 9} \\

\textsf{Hence, the value of P is 9.}

Similar questions