Math, asked by gaurav7043, 1 year ago

solve the equation and check the answer.​

Attachments:

Answers

Answered by Anonymous
7

Question :-

Solve  \sf  \dfrac{4x + 1}{x + 4} = 5

Answer :-

x = - 19

Solution :-

 \sf  \dfrac{4x + 1}{x + 4} = 5

 \sf  \dfrac{4x + 1}{x + 4} =  \dfrac{5}{1}

By cross multiplication :-

⇒ (4x + 1)1 = 5(x + 4)

⇒ 4x + 1 = 5x + 20

Transpose 4x to RHS

⇒ 1 = 5x + 20 - 4x

⇒ 1 = x + 20

Transpose 20 to LHS

⇒ 1 - 20 = x

⇒ - 19 = x

⇒ x = - 19

Verification :-

 \sf  \dfrac{4( - 19) + 1}{ - 19 + 4} = 5

 \sf  \dfrac{ - 76+ 1}{ - 19 + 4} = 5

 \sf  \dfrac{ - 75}{ - 15} = 5

 \sf  \dfrac{75}{15} = 5

 \sf  5 = 5

Answered by StarGazer001
11

Answer:-

 \bold{ \frac{4x + 1}{x + 4}  = 5}

 \bold{ \frac{4x + 1}{x + 4}  =  \frac{5}{1} }

[ cross multiplication ]

 \bold{1(4x + 1) = 5(x + 4)}

 \bold{4x + 1 = 5x + 20}

 \bold{4x - 5x = 20 - 1}

 \bold{ - x = 19}

 \boxed {x =  - 19}

Verification:-

[substitute x=-19 in place of x]

 \bold{ \frac{4( - 19) + 1}{ - 19 + 4}  =  \frac{5}{1} }

 \bold{ \frac{ - 76 + 1}{ - 15}  =  \frac{5}{1} }

  \bold{ \frac{ - 75}{ - 15}  =  \frac{5}{1} }

 \bold{ \frac{5}{1}  =  \frac{5}{1} }

Hence proved !

Similar questions