Math, asked by manthan2008, 1 month ago

solve the equation and find the value of x.​

Attachments:

Answers

Answered by luvsarama29
0

Answer:

the value of x is = - 4÷3 or - 1.33

Answered by NITESH761
0

Step-by-step explanation:

\sf We \: have,

\sf 2-\dfrac{3-x}{x-1}=\dfrac{3x+4}{x+1}

\sf \dfrac{2(x-1)-3+x}{x-1}=\dfrac{3x+4}{x+1}

\sf \dfrac{2x-2-3+x}{x-1}=\dfrac{3x+4}{x+1}

\sf \dfrac{3x-5}{x-1}=\dfrac{3x+4}{x+1}

\sf \bf On\: cross\: multiplying,

\sf : \implies (x+1)(3x-5)=(3x+4)(x-1)

\sf : \implies 3x^2+3x-5x-5=3x^2-3x+4x-4

\sf : \implies 3x^2-2x-5=3x^2+x-4

\sf : \implies -2x-5=x-4

\sf : \implies -2x-x=-4+5

\sf : \implies -3x=-1

\sf : \implies 3x=1

\sf : \implies \underline{\boxed{\sf \bf x=\dfrac{1}{3}}}

Similar questions