Math, asked by nick3919, 5 months ago

Solve the equation and verify​

Attachments:

Answers

Answered by EthicalElite
8

Question :

Solve the equation and verify :

  •  \sf \dfrac{4x + 1}{3x - 2} = - 2

Answer :

 \large \underline{\boxed{\bf x = 0.3}}

Solution :

 \sf \dfrac{4x + 1}{3x - 2} = - 2

By cross multiply, we get :

 \sf : \implies 4x + 1 = - 2 \times (3x-2)

 \sf : \implies 4x + 1 = - 6 x + 4

 \sf : \implies 4x + 1 + 6 x - 4 = 0

 \sf : \implies 10x - 3 = 0

 \sf : \implies 10x = 3

 \sf : \implies x = \dfrac{3}{10}

 \sf : \implies x = 0.3

 \large \underline{\boxed{\bf{x = 0.3}}}

Verification :

 \sf \dfrac{4x + 1}{3x - 2} = - 2

\bf \underline{\boxed{\bf LHS}} = \dfrac{4x + 1}{3x - 2}

By substituting value of x = 0.3

 \sf : \implies LHS = \dfrac{4(0.3) + 1}{3(0.3) - 2}

 \sf : \implies LHS = \dfrac{4 \times \dfrac{3}{10} + 1}{3 \times \dfrac{3}{10} - 2}

 \sf : \implies LHS = \dfrac{\dfrac{12}{10} + \dfrac{10}{10}}{\dfrac{9}{10} - \dfrac{20}{10}}

 \sf : \implies LHS = \dfrac{\dfrac{12+ 10}{10}}{\dfrac{9-20}{10}}

 \sf : \implies LHS = \dfrac{\dfrac{22}{10}}{\dfrac{- 11}{10}}

 \sf : \implies LHS = \dfrac{\cancel{22}}{\cancel{10}} \times \dfrac{\cancel{10}}{- \cancel{11}}

 \sf : \implies LHS = \dfrac{2}{-1}

 \sf : \implies LHS = - 2

 \bf \underline{\boxed{\bf RHS}} = - 2

 \underline{\boxed{\bf As, \: LHS = RHS.}}

 \underline{\boxed{\bf Hence, \: verified}}

Similar questions