Math, asked by Anonymous, 17 days ago

Solve the equation and verify it !
 \sf \large \:  \frac{3}{x - 1}  -  \frac{2}{x - 2}  =  \frac{1}{x - 3}  \\
no spam ^_^​

Answers

Answered by AиgєℓíᴄAυяσяα
52

Step-by-step explanation:

 \sf \: Solution:-

LCM of the denominators of the terms in the LHS is (x - 1)(x - 2)

 \sf \: So,  \frac{3(x - 2) - 2(x - 1)}{(x - 1)(x - 2)}  \:  =  \frac{ 1}{(x - 3)} \\  \\  \sf \:  \Rightarrow  \frac{3x-6-2x+2}{ x^ 2 -2x-x+2} =  \frac{1}{ x-3}

(Removing the brackets in the numerator and the denominator of the LHS)

 \sf \Rightarrow \frac{ x-4 }{x^ 2 -3x+2 }=  \frac{1 }{x-3} \\   \\ \sf \: \red{( by \: cross \: multiplication)} \:  \\    \\   \sf \:  \Rightarrow(x-4)(x-3)=x^ 2 -3x+2  \\ \\ \sf  \Rightarrow x^ 2 -3x-4x+12=x^ 2 -3x+2 \\  \\  \sf \:  \red{(On  \: removing  \: the  \: brackets) } \\  \sf \:  \Rightarrow  \cancel{x^ 2} - \cancel{x^ 2} -7x+3x=+2-12 \\  \\  \sf \red{(Transposing   \: x ^ 2  \: - 3x \:  to \:  the  \: LHS  \: and \:  12 \:  to \:  the \:  RHS) } \\  \\  \sf \:  \Rightarrow \:   - 4x =  - 10 \\  \\   \sf\Rightarrow \: x =  \frac{ - 10}{ - 4}  \\  \\  \sf \red{ (Transposing \:  -4  \: to  \: the \:  RHS) }\\  \\ \sf \therefore \: x = 2.5

Varification

 \sf \Rightarrow  \frac{3}{ 2.5-1 }-  \frac{2 }{2.5-2} = \frac{ 1}{ 2.5-3} \\  \sf \: \Rightarrow \:  \frac{3}{1.5}  -  \frac{2}{0.5}  =  \frac{1}{ - 0.5}  \\  \sf \: \Rightarrow \: 2 - 4 =  - 2 \\  \sf \: \Rightarrow \:  - 2 =  - 2 \\  \\  \sf \red{Thus, \:  LHS  \: = RHS  \: . Hence,  \: verified.}

Similar questions