Solve the equation and write general solution: 1 + sin 2x = (sin 3x - cos 3x)²
Answers
Answer:
General Solution = {π/8+ 2nπ} U {3π/8+ 2nπ} U {2nπ} U {π/2+ 2nπ}
Solution:
Given that
1 + sin 2x = (sin 3x - cos 3x)²
(sin 3x - cos 3x)² = 1 + sin 2x
sin² 3x + cos² 3x + 2 sin 3x . cos 3x = 1 + sin 2x
1 + 2 sin 3x . cos 3x = 1 + sin 2x ( ∵ sin² 3x + cos² 3x = 1)
Cancelling 1 on both sides, we get
2 sin 3x . cos 3x = sin 2x
sin 2(3x) = sin 2x
sin 6x - sin 2x = 0
2 cos[(6x+2x)/2]. sin[(6x-2x)/2] = 0
cos[(8x)/2]. sin[(4x)/2] = 0/2
Cos 4x . Sin 2x = 0
Cos 4x = 0 , Sin 2x = 0
For Cos 4x = 0:
Cos 4x = 0
4x = π/2 AND 4x = 3π/2
x = π/8 AND x = 3π/8
General Solution = {π/8+ 2nπ} U {3π/8+ 2nπ}
For Sin 2x = 0:
Sin 2x = 0
2x = 0 AND 2x = π
x = 0 AND x =π/2
General Solution = {0 + 2nπ} U {π/2+ 2nπ}
General Solution = {2nπ} U {π/2+ 2nπ}