Math, asked by allenjmathew2121, 1 day ago

Solve the equation arccos(cos(x)) = \pi -\frac{2x^2}{\pi }

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given equation is

\rm \: arc \: cos(cosx) = \pi \:  -  \: \dfrac{ {2x}^{2} }{\pi }  \\

can be rewritten as

\rm \:  {cos}^{ - 1} (cosx) = \pi \:  -  \: \dfrac{ {2x}^{2} }{\pi }  \\

We know,

\rm \:  \: {cos}^{ - 1} (cosx) \:  =  \: x \:  \: when \:  \: x \:  \in \: [0, \: \pi ] \\

So,

\rm \: x \:  =  \: \pi  \:  -  \: \dfrac{ {2x}^{2} }{\pi }

\rm \: x \:  =  \: \dfrac{ {\pi }^{2}  -  {2x}^{2} }{\pi }

\rm \:  {\pi }^{2} -  {2x}^{2} = \pi x

\rm \:  {2x}^{2}  +  \pi x -  {\pi }^{2}  = 0

So, its a quadratic equation, so to find its roots, we use Quadratic Formula.

\rm \: x = \dfrac{ - ( \pi ) \:  \pm \:  \sqrt{ {(\pi) }^{2} - 4( -  {\pi }^{2})(2)} }{2(2)}

\rm \: x = \dfrac{ -  \pi  \:  \pm \:  \sqrt{ {\pi }^{2}  + 8 {\pi }^{2} } }{4}  \\

\rm \: x = \dfrac{ -  \pi  \:  \pm \:  \sqrt{ 9 {\pi }^{2} } }{4}  \\

\rm \: x = \dfrac{  - \pi  \:  \pm \: 3\pi  }{4}  \\

\rm \: x = \dfrac{  - \pi  \: +  \: 3\pi  }{4} \:  \: or \:  \: \dfrac{ -  \pi  \: - \: 3\pi  }{4}  \\

\rm \: x = \dfrac{ 2\pi  }{4} \:  \: or \:  \: \dfrac{  - 4\pi  }{4}  \\

\rm \: x = \: \dfrac{\pi  }{2} \:  \: or \:  \:  -  \:  \pi  \:    \:  \{rejected \: as \: x \:  \in \:[0,\pi ] \\

\rm\implies \:x \:  =  \:\dfrac{\pi  }{2}   \\

VERIFICATION

Given equation is

\rm \: arc \: cos(cosx) = \pi \:  -  \: \dfrac{ {2x}^{2} }{\pi }  \\

On substituting the value of x, we get

\rm \: arc \: cos(cos\dfrac{\pi  }{2}) = \pi \:  -  \: \dfrac{ {2\pi }^{2} }{4\pi }  \\

\rm \: arc \: cos(0) = \pi \:  -  \:  \dfrac{\pi  }{2}  \\

\rm \:  {cos}^{ - 1}0  \: = \:\dfrac{\pi  }{2}   \\

 \rm\implies \:\dfrac{\pi  }{2} \:  =  \: \dfrac{\pi  }{2}\\

Hence, Verified

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y =  {sin}^{ - 1}(sinx) & \sf  x \:  \: if -\dfrac{\pi  }{2} \leqslant x \leqslant \dfrac{\pi  }{2}\\ \\ \sf y =  {cos}^{ - 1}(cosx) & \sf x \:  \: if \: 0 \leqslant y \leqslant \pi \\ \\ \sf y =  {tan}^{ - 1}(tanx) & \sf x \:  \: if \:  - \dfrac{\pi  }{2} < x < \dfrac{\pi  }{2}\\ \\ \sf y =  {cosec}^{ - 1}(cosecx) & \sf x \:  \: if \: x \:  \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi  }{2}\bigg] -  \{0 \}\\ \\ \sf y =  {sec}^{ - 1}(secx) & \sf x \:  \: if \: x \:  \in \: [0, \: \pi] \:   -  \: \bigg\{\dfrac{\pi  }{2}\bigg\}\\ \\ \sf y =  {cot}^{ - 1}(cotx) & \sf x \:  \: if \:  \:  \in \: \bigg( -  \dfrac{\pi  }{2} , \dfrac{\pi  }{2}\bigg) -  \{0 \} \end{array}} \\ \end{gathered} \\

Answered by Anonymous
28

{\pmb{\underline{ \rm{\red{Solution:-}}}}}

  • Answer in the above attachment.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Attachments:
Similar questions