Math, asked by mburu, 3 months ago

solve the equation b completing square a^2x^2=axb+2b^2

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 {a}^{2}  {x}^{2}  = abx + 2 {b}^{2}

 \implies {a}^{2}  {x}^{2}  - abx - 2 {b}^{2}  = 0

 \implies {a}^{2}  {x}^{2}  - abx  +   \frac{ {b}^{2}}{4}  - 2 {b}^{2} -  \frac{ {b}^{2} }{4}   = 0 \\

  \implies(ax -  \frac{b}{2} )^{2} -  \frac{9 {b}^{2} }{4}   = 0 \\

 \implies(ax -  \frac{b}{2} ) =  \frac{3b}{2}  \:  \: or \:  \: (ax -  \frac{b}{2} ) =  -  \frac{3b}{2} \\

 \implies \: x =  \frac{2b}{a}  \:  \: or \:  \: x = -   \frac{b}{a}  \\

Similar questions