Math, asked by kambleaniket77946, 4 months ago

solve the equation by creamers rule x+y=3,y+z=5 z+x=4​

Answers

Answered by kadeejasana2543
0

Answer:

By creamer's rule, x=1,\ y=2,\ z=3

Step-by-step explanation:

For the equations

x+y=3\\\\y+z=5\\\\z+x=4,  write the coefficient matrix

D=\left[\begin{array}{ccc}1&1&0\\0&1&1\\1&0&1\end{array}\right] ,the variable matrix X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right] and solution matrixB=\left[\begin{array}{ccc}3\\5\\4\end{array}\right]

consider the matrix D_{1} with replacing the first column of D by B to find the value of x.

D_{1}=\left[\begin{array}{ccc}3&1&0\\5&1&1\\4&0&1\end{array}\right],

det\ D_{1} =3(1-0)-1(5-4)=3-1=2

D_{2} =\left[\begin{array}{ccc}1&3&0\\0&5&1\\1&4&1\end{array}\right]

det\ D_{2}= 1(5-4)-3(0-1)=1+3=4

D_{3}=\left[\begin{array}{ccc}1&1&3\\0&1&5\\1&0&4\end{array}\right]

det D_{3}= 1(4-0) -1(0-5)+3(0-1)=4+5-3=6

and det D=1(1-0)-1(0-1)=1+1=2.

By creamer's rule,

x=\frac{detD_{1} }{detD} , y=\frac{det D_{2} }{det D} , Z=\frac{det D_{3} }{det D}

Therefore x=1,\ y=2,\ z=3.

thank you

Similar questions