Math, asked by ayushkamble32555, 2 months ago

solve the equation by matrix method x+y+z=3;y+z=1;x+z=3

Answers

Answered by jha60617
2

Answer:

From the given set of equations we have,

1

2

3

1

3

−1

−1

1

−7

x

y

z

=

3

10

1

AX=B

X=A

−1

B

A

−1

=

∣A∣

1

adj(A)

∣A∣=

1

2

3

1

3

−1

−1

1

−7

=1(−21+1)−1(−14−3)−1(−2−9)

=8

=0

Next let us find the adjoint of C

C

11

=(−1)

1+1

3

−1

1

−7

=−20

C

12

=(−1)

1+2

2

3

1

−7

=17

C13=(−1)

1+3

2

3

3

−1

=−11

C

21

=(−1)

2+1

1

−1

−1

−7

=8

C

22

=(−1)

2+2

1

3

−1

−7

=−4

C

23

=(−1)

2+3

1

3

1

−1

=4

C

31

=(−1)

3+1

1

3

−1

1

=4

C

32

=(−1)

3+2

1

2

−1

1

=−3

C

33

=(−1)

3+3

1

2

1

3

=1

C

A

=

−20

8

4

17

−4

−3

−11

4

1

adj(A)=C

A

T

=

−20

17

−11

8

−4

4

4

−3

1

A

−1

=

8

1

−20

17

−11

8

−4

4

4

−3

1

X=A

−1

B

=

8

1

−20

17

−11

8

−4

4

4

−3

1

3

10

1

=

8

1

24

8

8

x

y

z

=

3

1

1

$$

x=3,y=1,z=1

Attachments:
Similar questions