Math, asked by ingridmitchell20, 7 months ago

Solve the equation by quadratic formula method : x² + 9x - 3 = 0​

Answers

Answered by MяƖиνιѕιвʟє
6

Given :-

  • x² + 9x - 3 = 0

Solution :-

  • a = 1
  • b = 9
  • c = - 3

Apply quadratic formula

D = - 4ac

where D is discriminant

→ D = (9)² - 4 × 1 × (-3)

→ D = 81 + 12

→ D = 93

Now,

→ x = - b ± √D/2a

So,

→ x = - b + √D/2a

→ x = -9 + √93/2 × 1

→ x = - 9 + √93/2

________________________________

→ x = - b - √D/2a

→ x = -9 - √93/2 × 1

→ x = - 9 - √93/2

Hence,

  • x = - 9 + √93/2 or - 9 - √93/2
Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \:    \huge\underline{\boxed { \bf{answer \ddot \frown}}}

 \:  \:  \diamondsuit  \bf{ {x}^{2} + 9x - 3 = 0} \:  \:  \: ......given \: quadratic \: equation

 \:   \:   \\ \: \implies \underline{ \displaystyle \sf{ \: by \: using \: \: determinant \: form}}

 \:  \:  \mapsto \sf{ { b}^{2}  - 4ac}

 \:  \mapsto \sf{ {(9)}^{2}  - 4(1)( - 3)}

 \:  \:  \mapsto \sf{81 + 12}

 \:  \:  \mapsto \sf{93}

 \:  \:  \bigstar\underline{ \bf{  \: by \: using \: formula \: method}}

 \:  \:  \implies \displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \:  \:  \implies \displaystyle \sf{x =  \frac{ - 9 \pm \sqrt{93} }{2} }

 \:  \\  \implies \displaystyle \sf{x =   \frac{ - 9 -  \sqrt{93} }{2}  \: and \: x =  \frac{ - 9  +   \sqrt{93} }{2} are \: the \: roots \: }

\boxed{\sf{x=\dfrac{-9+\sqrt{93}}{2}  \: and \: x=\dfrac{-9-\sqrt{93}}{2} \: are \: the \: solutions }}

Similar questions
English, 1 year ago