Math, asked by Anonymous, 4 months ago

solve the equation by transposition method and check the result​

Attachments:

Answers

Answered by mathdude500
10

Solve : -

\bf \:  \dfrac{5}{4} (3x - 1) - 1(4x - \dfrac{2 - x}{3} ) = x + \dfrac{7}{3}

\sf \:  ⟼\dfrac{15x - 5}{4}  \:  -  \: \dfrac{12x - (2 - x)}{3}  = \dfrac{3x + 7}{3}

\sf \:  ⟼\dfrac{15x - 5}{4}  - \dfrac{13x - 2}{3}  = \dfrac{3x + 7}{3}

\sf \:  ⟼\dfrac{3(15x - 5) - \: 4(13x - 2)}{12}  = \dfrac{3x + 7}{3}

\sf \:  ⟼\dfrac{45x - 15 - 52x + 8}{12}  =\dfrac{3x + 7}{3}

\sf \:  ⟼\dfrac{ - 7x - 7}{12}  = \dfrac{3x + 7}{3}

☆ On cross multiplication, we get

\sf \:  ⟼ \:  - 21x - 21 = 36x + 84

\sf \:  ⟼ \:  - 21x - 36x = 84 + 21

\sf \:  ⟼ - 57x =  105

\sf \:  ⟼x =  - \dfrac{105}{57}  =  - \dfrac{35}{19}

\bf\implies \:x =  - \dfrac{35}{19}

━─━─━─━─━─━─━─━─━─━─━─━─

Verification:-

Consider LHS

\bf \:  \dfrac{5}{4} (3x - 1) - 1(4x - \dfrac{2 - x}{3} )

☆ On substituting the value of x, we get

\sf \:  ⟼\dfrac{5}{4}  \bigg(3 × \dfrac{ - 35}{19}  - 1 \bigg) -  \bigg(4 \times \dfrac{ - 35}{19}  - \dfrac{2 - \dfrac{ - 35}{19} }{3}  \bigg)

\sf \:  ⟼\dfrac{5}{4}  \bigg(\dfrac{ - 105}{19}  - 1 \bigg) - \bigg(\dfrac{ - 140}{19}  - \dfrac{38 + 35}{19 \times 3} \bigg)

\sf \:  ⟼\dfrac{5}{4} \bigg(\dfrac{ - 105 - 19}{19} \bigg) - \bigg(\dfrac{ - 420 - 73}{57} \bigg)

\sf \:  ⟼\dfrac{5}{ \cancel{4}} \bigg(\dfrac{ \cancel{ - 124} \:  \:  \: ^ { -  31}}{19} \bigg) - \bigg(\dfrac{ - 493}{57} \bigg)

\sf \:  ⟼ - \dfrac{ 155}{19}  + \dfrac{493}{57}

\sf \:  ⟼\dfrac{ - 465+ 493}{57}

\sf \:  ⟼\dfrac{28}{57}

─━─━─━─━─━─━─━─━─━─━─━─━─

Consider RHS

\sf \:  ⟼x + \dfrac{7}{3}

On substituting the values of x, we get

\sf \:  ⟼ - \dfrac{35}{19}  +  \dfrac{7}{3}

\sf \:  ⟼\dfrac{ - 105 + 133}{57}  =  \dfrac{28}{57}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf\implies \:➦ LHS = RHS

\bf \:    \large\boxed{\bf\implies \:Hence,  \: Verified ✔}

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by Anonymous
1

Answer:

hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.

mai Aditya yadd hu kaya

Similar questions