Math, asked by kourtarandeep36, 8 months ago

solve the equation by using quadratic formula 1. √2x^2 +7x+5√2​

Answers

Answered by Abhishek474241
0

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • √2x²+7x+5√2

{\sf{\green{\underline{\large{To\:find}}}}}

  • Zeroes by
  • Quadratic formula

{\sf{\pink{\underline{\Large{Explanation}}}}}

Polynomial

  • √2x²+7x+5√2

Here

From ax²+bx+c

  • a=√2
  • b=7
  • c=5√2

Quadratic formula

\tt{X=\dfrac{-b\pm{\sqrt{b^2-4ac}}}{2a}}

utting the values

\tt{X=\dfrac{-b\pm{\sqrt{b^2-4ac}}}{2a}}

\rightarrow\tt{X=\dfrac{-7\pm{\sqrt{49-40}}}{2\sqrt{2}}}

\rightarrow\tt{X=\dfrac{-7\pm{\sqrt{9}}}{2\sqrt{2}}}

Taking x as +

\rightarrow\tt{X=\dfrac{-7+{\sqrt{9}}}{2\sqrt{2}}}

\rightarrow\tt{X=\dfrac{-7+{3}}{2\sqrt{2}}}

\rightarrow\tt{X=\dfrac{-4}{2\sqrt{2}}}

Taking x as -

\rightarrow\tt{X=\dfrac{-7-{\sqrt{9}}}{2\sqrt{2}}}

\rightarrow\tt{X=\dfrac{-7-{3}}{2\sqrt{2}}}

\rightarrow\tt{X=\dfrac{-10}{2\sqrt{2}}}

Additional Information

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\rightarrow\tt\alpha{+}\beta{=}\frac{-b}{a}

&

\rightarrow\tt\alpha{\times}\beta{=}\frac{c}{a}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{-7}{\sqrt{2}}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{5\sqrt{2}}{\sqrt{2}}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by Anonymous
0

S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}

√2x² + 7x + 5√2

\bf{\large{\underline{\bf{To\:find\::}}}}

The zeroes.

\bf{\large{\underline{\bf{Explanation\::}}}}

We know that formula of the quadratic equation :

\boxed{\bf{x=\frac{-b\pm\sqrt{b^{2} -4ac} }{2a} }}}}

As we know that given polynomial compared with ax² + bx + c;

  • a = √2
  • b = 7
  • c = 5√2

A/q

\longrightarrow\sf{x=\dfrac{-7\pm\sqrt{(7)^{2}-4\times \sqrt{2}\times 5\sqrt{2}   } }{2\sqrt{2} } }\\\\\\\longrightarrow\sf{x=\dfrac{-7\pm\sqrt{49-20\times 2} }{2\sqrt{2} } }\\\\\\\longrightarrow\sf{x=\dfrac{-7\pm\sqrt{49-40} }{2\sqrt{2} } }\\\\\\\longrightarrow\sf{x=\dfrac{-7\pm\sqrt{9} }{2\sqrt{2} } }\\\\\\\longrightarrow\sf{x=\dfrac{-7\pm3}{2\sqrt{2} } }\\\\\\\longrightarrow\sf{x=\dfrac{-7+3}{2\sqrt{2} } \:\;Or\:\:x=\dfrac{-7-3}{2\sqrt{2} } }\\\\

\longrightarrow\sf{x=\dfrac{-4}{2\sqrt{2} } \:\:\:Or\:\:\:x=\dfrac{-10}{2\sqrt{2} }}

Similar questions