Math, asked by Anonymous, 8 months ago

Solve the equation. Check your result in each case...
 \small\bf{plz \: ans \: do \: koi.....}

Attachments:

Answers

Answered by piyush201888
1

Answer:

3x-1/5-x/7=3

Or, 3x-x/7=3+1/5

Or, (21x-x)/7=(15+1)/5

Or, 20x/7=16/5

Or, x=16×7/20×5

Or, x=4×7/5×5

Or, x=28/25

Attachments:
Answered by Anonymous
30

\color{red}{\large\underline{\underline\mathtt{Question:}}}

  • \mathtt{\dfrac{3x - 1}{5} - \dfrac{x}{7} = 3}
  • \mathtt{\dfrac{y - 1}{3} - \dfrac{y - 2}{4} = 1}

______________________________________

\color{purple}{\large\underline{\underline\mathtt{To\:Find:}}}

\textit{The value x in first case and the value of y in other case.}

______________________________________

\color{blue}{\large\underline{\underline\mathtt{Concept:}}}

\textsf{By simple calculation we can}

\textsf{find the required value of variables.}

______________________________________

\color{magenta}{\large\underline{\underline\mathtt{Solution:}}}

  • \mathtt{\dfrac{3x - 1}{5} - \dfrac{x}{7} = 3}

\text{LCM is 35}

\Rightarrow \dfrac{21x - 7 - 5x}{35} = 3

\Rightarrow \dfrac{16x - 7 }{35} = 3

\Rightarrow 16x - 7  = 3 \times 35

\Rightarrow 16x - 7  = 105

\Rightarrow 16x = 105 + 7

\Rightarrow 16x = 112

\Rightarrow x = \dfrac{112}{16}

\Rightarrow x = \dfrac{\cancel{112}}{\cancel{16}}

\Rightarrow x = 7

______________________________________

  • \mathtt{\dfrac{y - 1}{3} - \dfrac{y - 2}{4} = 1}

\text{LCM is 12}

\Rightarrow\dfrac{4y - 4 - 3y + 6}{12} = 1

\Rightarrow\dfrac{y + 2}{12} = 1

\Rightarrow y + 2 = 1 \times 12

\Rightarrow y + 2 = 12

\Rightarrow y = 12 - 2

\Rightarrow y = 10 ______________________________________

\color{lime}{\large\underline{\underline\mathtt{Check:}}}

\textit{By putting the value in the equation}

  • \mathtt{\dfrac{3x - 1}{5} - \dfrac{x}{7} = 3}

\Rightarrow \dfrac{3 \times 7 - 1}{5} - \dfrac{7}{7} = 3

\Rightarrow \dfrac{21 - 1}{5} - 1 = 3

\Rightarrow \dfrac{20}{5} - 1 = 3

\Rightarrow \dfrac{20}{5} = 3 + 1

\Rightarrow 4 = 4

\boxed{Proved}

______________________________________

  • \mathtt{\dfrac{y - 1}{3} - \dfrac{y - 2}{4} = 1}

\Rightarrow \dfrac{10 - 1}{3} - \dfrac{10 - 2}{4} = 1

\Rightarrow \dfrac{9}{3} - \dfrac{8}{4} = 1

\Rightarrow 3 - 2 = 1

\Rightarrow 1 = 1

\boxed{Proved}

______________________________________

Similar questions