Math, asked by PragyaTbia, 1 year ago

Solve the equation: cos θ - cos 7θ = sin 4θ

Answers

Answered by MaheswariS
0

Answer:


Step-by-step explanation:

Formula used:

cosC-cosD=-2sin(\frac{C+D}{2}) sin(\frac{C-D}{2})\\\\The\:solution\:of\:sin\theta=sin\alpha\:is\:\theta=n\pi+{(-1)}^n\alpha

cos θ - cos 7θ = sin 4θ

-2sin(\frac{\theta+7\theta}{2}) sin(\frac{\theta-7\theta}{2})=sin4\theta

-2\:sin4\theta. sin(-3\theta)=sin4\theta\\\\2\:sin4\theta. sin3\theta-sin4\theta=0\\\\sin4\theta (2sin3\theta-1)=0

(1)sin4\theta=0\\4\theta=n\pi\\\theta=\frac{n\pi}{4}\\

(2)2sin3\theta-1=0\\sin3\theta=\frac{1}{2}\\sin3\theta=sin\frac{\pi}{6}\\3\theta=n\pi+{(-1)}^n\frac{\pi}{6}\\\theta=\frac{n\pi}{3}+{(-1)}^n\frac{\pi}{18}




Similar questions