Math, asked by Anonymous, 1 month ago

Solve the equation : cos theta /1-sin theta + cos theta / 1+ sin theta please don't spam don't copy quality answers needed​

Answers

Answered by 10a01anuragkalita64
3

Step-by-step explanation:

its 2 sec theta . the answer is provided. hope you understand it

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:\dfrac{cos\theta }{1 - sin\theta }  + \dfrac{cos\theta }{1 + sin\theta }

Taking common, we have

\rm \:  =  \:cos\theta \bigg[\dfrac{1}{1 - sin\theta } + \dfrac{1}{1 + sin\theta }  \bigg]

On taking LCM, we get

\rm \:  =  \:cos\theta \bigg[\dfrac{1 + sin\theta  + 1 - sin\theta }{(1 - sin\theta)(1 + sin\theta)} \bigg]

We know,

 \red{\boxed{ \tt{ \:(x + y)(x - y) =  {x}^{2}-{y}^{2}}}}

So, using this identity, we get

\rm \:  =  \:cos\theta \bigg[\dfrac{2}{1 -  {sin}^{2}\theta} \bigg]

We know,

 \purple{\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this identity, we get

\rm \:  =  \:cos\theta  \times \bigg[\dfrac{2}{ {cos}^{2}\theta} \bigg]

\rm \:  =  \:\dfrac{2}{cos\theta }

\rm \:  =  \:2 \: sec\theta

Hence,

 \green{\rm \implies\:\boxed{ \tt{ \: \dfrac{cos\theta }{1 - sin\theta }  + \dfrac{cos\theta }{1 + sin\theta }  = 2 \: sec\theta }}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions