Math, asked by PragyaTbia, 1 year ago

Solve the equation cos x - sin x = 1

Answers

Answered by hukam0685
1
Solution:
➖➖➖➖

cos \: x \times \frac{1}{ \sqrt{2} } - \sin(x) \times \frac{1}{ \sqrt{2} } = \frac{1}{ \sqrt{2} }  \\ \\ \cos(x) \cos(45°) - \sin(x) \sin(45°) = \frac{1}{ \sqrt{2} } \\ \\

on multiplying both side by 1/√2 .

now we are applying the formula of
cos a cos b - sin a sin b

 \cos(A) \cos(B) - \sin(A) \sin(B) = \cos(A + B) \\ \\

\cos(x) \cos(45°) - \sin(x) \sin(45°) = \frac{1}{ \sqrt{2} } \\ \\ \cos(x + 45°) = \frac{1}{ \sqrt{2} } \\ \\ x + 45° = {cos}^{ - 1}( \frac{1}{ \sqrt{2} } ) \\ \\ x + 45° = {cos}^{ - 1}( \cos(45°) ) \\ \\ x + 45° = 45° \\ \\ x = 45° - 45° \\ \\ x = 0
Similar questions