Math, asked by PragyaTbia, 1 year ago

Solve the equation: cot x + cosec x = √3

Answers

Answered by ronaldo51
6
cot 37.197.....+cosec*(1.147.....*1.147....=root 3
Answered by hukam0685
44

Answer:

x=\frac{\pi }{3}

Step-by-step explanation:

As we know that

cot x= cos x/sin x

cosec x=1/sin x

\frac{cos\:x}{sin\:x} +\frac{1}{sin\:x} =\sqrt{3}\\\\ \frac{cos\:x+1}{sin\:x} =\sqrt{3}\\\\ \frac{2cos^{2}\frac{x}{2} }{2cos\frac{x}{2}sin\frac{x}{2}} =\sqrt{3} \\\\ \frac{cos\frac{x}{2} }{sin\frac{x}{2} }=\sqrt{3}\\ \\ cot\frac{x}{2}=\sqrt{3}

\frac{x}{2} =cot^{-1}\sqrt{3} \\\\\frac{x}{2} =cot^{-1}cos\frac{\pi}{6}\\\\\\\frac{x}{2}=\frac{\pi }{6} \\\\\\x=\frac{2\pi }{6}\\\\\\x =\frac{\pi }{3}

Hope it helps you.

Similar questions