Math, asked by redsoul, 11 months ago

Solve the equation \displaystyle \frac{5}{2-x}+\frac{x-5}{x+2}+\frac{3x+8}{x^2-4}=0 2−x 5 ​ + x+2 x−5 ​ + x 2 −4 3x+8 ​ =0. In the answer box, write the roots separated by a comma.


Gautamkumr: are two questions
redsoul: no
redsoul: 2-x 5+x.... i wrote by mistake
Gautamkumr: please writ questions in comment

Answers

Answered by Gautamkumr
3

 \frac{5}{2 - x}  +  \frac{x - 5}{x + 2} +  \frac{3x - 8}{x {}^{2}  - 4}   = 0 \\  \\  \frac{5}{2 - x}  +  \frac{x - 5}{x + 2} = \frac{3x - 8}{x {}^{2}  - 4}  \\  \\  \frac{(5x + 10) + (3x - 10 -  {x}^{2} )}{ -  {x }^{2} + 4 }  = \frac{3x -8}{x {}^{2}  - 4}  \\   \\  \frac{8x -  {x}^{2} }{ { - x}^{2}  + 4}  = \frac{3x -8}{x {}^{2}  - 4} \\ 8x -  {x}^{2}  = 3x - 8 \\  -  {x}^{2} + 8x - 3x + 8 = 0 \\ -  {x}^{2} + 5x + 8 = 0


Gautamkumr: please thanks me for time
Gautamkumr: thanks
Similar questions