solve the equation for x
Attachments:
Answers
Answered by
0
5²ˣ -5ˣ⁺³+125=5ˣ
5²ˣ -5ˣ×5³+125=5ˣ
Let 5ˣ be y. Then,
y² -125y+125=y
y²-126y+125=0
y²- y-125y+125=0
y( y-1) -125(y-1)=0
(y-125)(y-1)=0
now, y-125=0 and y-1=0
y=125 and y=1
therefore, 5ˣ=125 and 5ˣ=1
5ˣ=5³ and 5ˣ=x⁰
x=3 and x=0
5²ˣ -5ˣ×5³+125=5ˣ
Let 5ˣ be y. Then,
y² -125y+125=y
y²-126y+125=0
y²- y-125y+125=0
y( y-1) -125(y-1)=0
(y-125)(y-1)=0
now, y-125=0 and y-1=0
y=125 and y=1
therefore, 5ˣ=125 and 5ˣ=1
5ˣ=5³ and 5ˣ=x⁰
x=3 and x=0
Answered by
1
5^(2x)-5^(x+3)=5^(x)-125
5^(x)[5^(x)-5^(3)]=5^(x)-5^(3)
as we have two equation 5^(x)=0&5^(x)-5^(3)=0
and we get two roots
x=0&x=3
hope u understand. if not reply
5^(x)[5^(x)-5^(3)]=5^(x)-5^(3)
as we have two equation 5^(x)=0&5^(x)-5^(3)=0
and we get two roots
x=0&x=3
hope u understand. if not reply
Attachments:
avinash2511:
thank u
Similar questions