Math, asked by pnpsujata, 2 months ago

Solve the equation for x​

Attachments:

Answers

Answered by Anonymous
5

Given

 \sf \to \:  {4}^{x - 1}  \times (0.5) {}^{3 - 2x}  =   \bigg(\dfrac{1}{8} \bigg) ^{x}

To find The value of x

 \sf \to \:  {4}^{x - 1}  \times  \bigg( \dfrac{1}{2}   \bigg) {}^{3 - 2x}  =   \bigg(\dfrac{1}{8} \bigg) ^{x}

\sf \to \:  {2}^{2(x - 1)}  \times  \bigg( \dfrac{1}{2}   \bigg) {}^{3 - 2x}  =   \bigg(\dfrac{1}{8} \bigg) ^{x}

 \sf \to \:  {2}^{2x - 2}  \times  {2}^{ - 1(3 - 2x)}  =  {8}^{ - 1(x)}

 \sf \to \:  {2}^{2x - 2}  \times  {2}^{2x - 3}  =  {2}^{ - 3x}

 \sf \to \:  {2}^{2x - 2 + 2x - 3}  =  {2}^{ - 3x}

 \sf \to \:  {2}^{4x - 5}  =  {2}^{ - 3x}

 \sf \to \: 4x - 5 =  - 3x

 \sf \to \: 4x + 3x = 5

 \sf \to \: 7x = 5

 \sf \to \: x =  \dfrac{5}{7}

More Information

Some properties of exponential

 \sf \to \:  \dfrac{1}{a}  =  {a}^{ - 1}

 \sf \to \:  {a}^{0}  = 1

 \sf \to \: ( {a}^{m} )^{n}  =  {a}^{mn}

 \sf \to \bigg( \dfrac{a^{m} }{ {a}^{n} } \bigg) =  {a}^{m - n}

 \sf \to \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

Answered by OtakuSama
43

\huge{\underbrace{\text{Question}}}

\sf{\large{4 {}^{x - 1}  \times (0.5) {}^{3 - 2x}  =  { (\frac{1}{8} }^{x}) }}

Solve the equation for x

\huge{\underbrace{\text{\gray{Answer}}}}

 \rightarrow{\sf{4 {}^{x - 1}  \times (0.5) {}^{3 - 2x}  =  ({ \frac{1}{8}) }^{x} }}

\sf{\rightarrow{ { {2}^{2} }^{(x - 3)}  \times  { \frac{1}{2} }^{3 - 2x} =  (\frac{1}{ {2}^{3} }  }) {}^{x} }

\rightarrow{\sf{ {2}^{2x - 2}  \times 2 {}^{ - 1}  {}^{(3 - 2x)}  = 2 {}^{ - 3}  {}^{(x)} }}

\sf{\rightarrow{2 {}^{2x - 2}  \times  {2}^{ - 3 + 2x}  =  { 2 }^{ - 3x} }}

\sf{\rightarrow{2 {}^{2x - 2 + ( - 3 + 2x)}  =  {2}^{ - 3x} }}

\sf{\rightarrow{2 {}^{4x - 5}  =  {2}^{ - 3x} }}

\sf{\therefore{4x - 5 =  - 3x}} \:  \:  \:  \: \boxed{\sf{\blue{\because{ {a}^{x}  =  {a}^{y} =  > x = y}}}}

\sf{\rightarrow{4x + 3x = 5}}

\sf{\rightarrow{7x = 5}}

{\boxed{\sf{\therefore{\orange{x =  \frac{5}{7} }}}}}

\underline{\boxed{\rm{Hence, \: the\:answer\:is\:\bold{x =  \frac{5}{7} }}}}

\large{\underline{\underline{\sf{\purple{More\:information}}}}}

\sf{\rightarrow{\bold{ {a}^{x}  +  {a}^{y}}}}  =  {a}^{xy}  \\  \\ \sf{\rightarrow{\bold{ {a}^{x}   \times   {a}^{y}}}} =  {a}^{x + y}  \\  \\ \sf{\rightarrow{\bold{ {a}^{x}    -    {a}^{y}}}} =  {a}^{x  \div y} \\  \\ \sf{\rightarrow{\bold{ {a}^{x}     \div    {a}^{y}}}} =  {a}^{x   -  y} \\  \\ \sf{\rightarrow{\bold({ {a}^{x} )  {}^{y} }}} =  {a}^{x   y}

Similar questions
Biology, 2 months ago